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Competition for scarce resources
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We model a downstream industry where firms compete to buy capacity in an upstream market
which allocates capacity efficiently. Although downstream firms have symmetric production
technologies, we show that industry structure is symmetric only if capacity is sufficiently scarce.
Otherwise it is asymmetric, with one large, “fat,” capacity-hoarding firm and a fringe of smaller,
“lean,” capacity-constrained firms. As demand varies, the industry switches between symmetric
and asymmetric phases, generating predictions for firm size and costs across the business cycle.
Surprisingly, increasing available capacity can cause a reduction in output and consumer surplus
by resulting in such a switch.

1. Introduction
! Standard models of industrial organization treat inputs as being in perfectly elastic supply and
their trade disconnected from the downstream market. However, in many real-world industries,
the firms that compete downstream also face each other in the input market where supply is
inelastic. For example, jewelry makers that vie for the same customers also compete for precious
stones whose supply is limited; competing airlines divide a fixed number of landing slots at a
given airport; software companies that produce rival operating systems draw from the same pool
of skilled programmers; retailers of gas (petrol) use a common input that is in scarce supply; and
so on.

In this article, we investigate the interaction between efficient input markets and competitive
downstream industries and find some unexpected results. We study a model where firms with
the same decreasing-returns technology compete first for scarce production capacity in an input
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market. We model the input market as an efficient auction (allocating each unit of capacity to the
firm that values it the most), which in our environment could be a Vickrey auction, a first-price
menu auction, or a uniform-price share auction. The same outcome would also be attained via
Coasian bargaining as firms have complete information. Firms then compete in a Cournot fashion
subject to their resulting capacity constraints.

We show that efficient capacity allocation in the input market can transform an otherwise
symmetric downstream industry into a natural oligopoly with endogenous asymmetries. When
the amount of total capacity is sufficiently large, the only equilibrium of the game is asymmetric:
one firm is large and seemingly inefficient, while the other firms are small, efficient, and capacity
constrained. This result can explain the empirical “size-discount” puzzle that there is a negative
relationship between Tobin’s Q and firm size (Lang and Stulz, 1994). By contrast, when the total
capacity is lower than a certain threshold, then all firms are of equal size. We show that this
conditional industry structure persists even as the number of firms approaches infinity. Perhaps
the most surprising result is that as the total available capacity increases and crosses the threshold,
total downstream production decreases and so do consumer and social welfare. Our model also
suggests that the size distribution of firms should be more asymmetric in recessions than in
booms.

When the total available capacity is large, the asymmetric size distribution arises because
one firm finds it optimal to hoard capacity. This behavior keeps up the market price of output
for two reasons. First, it limits the other firms’ production by making them capacity constrained.
Second, as the large firm acquires more capacity, it is more willing to leave a larger fraction of
it unused. The large firm thus appears to be a “fat cat,” purchasing too much capacity and using
it very inefficiently, whereas the other firms appear “lean and mean,” making high rates of profit
despite their low capacity purchases. Nevertheless, the small, productive firms do not expand to
steal the downstream market from the large, inefficient firm.1 An econometrician or policy-maker
observing such a situation might suspect that some unobserved regulation, illegal anticompetitive
behavior, or political influence protects the large firm from its more efficient rivals. But our model
helps us to understand that this is not necessarily the case: the asymmetric outcome may simply
be the result of standard noncooperative behavior.

Our results can help to explain the size distribution of firms in industries where inputs are
scarce, which may be very asymmetric even though it is far from clear that the largest firms enjoy
any cost advantage over the smaller firms. For example, De Beers, the firm that dominates the
diamond market, has followed a strategy of buying up uncut diamonds and hoarding them in
order to maintain the price of cut diamonds (Spar, 2006). Similarly, in the United Kingdom it
was documented that the large petrol companies were buying up petrol-retailing forecourts (gas
stations) and removing this essential input from the market by filling the underground tanks with
concrete (Monopolies and Mergers Commission, 1990). Another example may be Microsoft, the
dominant firm in the market for PC operating systems, which employs more software engineers
and yet has a slower update cycle than some of its rivals (e.g., Apple). Famously, Salomon
Brothers engineered a “short squeeze” in the market for Treasury bonds, submitting bids for up
to 94% of the Treasury bonds available at auction in order to monopolize the secondary market
in these securities (Jegadeesh, 1993, shows that after-market prices were significantly higher as
a result). Similarly, in recent years, policymakers have been concerned that large manufacturers
offer so-called slotting allowances to buy up scarce shelf space at supermarkets at the expense of
their smaller rivals (see Marx and Shaffer, forthcoming). Finally, the prevailing market structure
at many large airports is that one airline hoards most of the landing slots (see Borenstein, 1989,
1991). In many of these industries, capacity or input is not literally sold in an “efficient auction.”
However, our results apply as long as the input allocation is efficient, which would be the result

1 The small firms may benefit from the presence of the large firm, making more profits than if the input were
distributed symmetrically (resulting in a symmetric Cournot outcome). Indeed, depending upon parameters, the large
firm’s purchases of excess input may be a “public good” for the industry.

C© RAND 2010.



526 / THE RAND JOURNAL OF ECONOMICS

of Coasian bargaining among the firms themselves, or if capacity is sold in a (commonly used)
uniform-price share auction.

The threshold level of capacity at which production switches from being symmetric to being
asymmetric varies according to the level of demand downstream. Starting at the threshold with
symmetric firms (which is the socially most efficient point), an expansion in demand generates
a rise in the price of output, but the industry remains symmetric. By contrast, a contraction in
demand causes all firms but one to shrink their output while the remaining firm absorbs the excess
capacity. Thus, the efficient capacity auction exacerbates the procyclicality of output across the
cycle because there is input hoarding during recessions, whereas inputs are fully utilized in booms.

Our results have important policy implications for industries with scarce inputs. Whereas
a government may be concerned about the emergence of a dominant firm in such markets, we
show that encouraging downstream entry will not help much. Even as the number of downstream
firms tends to infinity, the equilibrium when available capacity is large remains asymmetric and
uncompetitive, resembling the textbook model of a dominant firm constrained by a competitive
fringe. In contrast to that model, however, downstream output does not converge to competitive
levels in our model and the one-firm concentration ratio remains bounded away from zero.2

More surprisingly, encouraging upstream entry as a response to input scarcity might even
make things worse. Perhaps the most unexpected result of our model is that an increase in the
quantity of input (capacity) available can result in a reduction in the total quantity of output.
For low capacity levels, all firms are symmetric and capacity constrained. A well-intentioned
government might try to encourage additional provision of the scarce input so as to increase
output, benefitting consumers. We show, however, that near the capacity threshold such an attempt
would be misguided, because increasing capacity beyond the threshold actually results in a discrete
reduction in output and consumer surplus. This reduction in output results from the switch to
the asymmetric allocation of input, which, as noted above, is productively inefficient. The total
profit of downstream firms is continuous at the capacity threshold (they are indifferent between the
symmetric and asymmetric allocations) but total output and consumer surplus fall discontinuously
due to the introduction of production inefficiencies.

In recent years, governments have employed economists to help them (re)design markets for
the allocation of scarce inputs.3 The typical prescription has been that the old “beauty contests”
(in the case of spectrum) or rigid structures of bilateral contracts and vertical integration (in the
case of electricity and gas) should be replaced by centralized auction markets to place the input
in the hands of those who value it the most. Our results suggest that this prescription is misplaced
in a context where the purchasing firms compete downstream. It is not entirely surprising that an
efficient auction, as it maximizes the bidders’ surplus, may allocate the input in a way that results
in a lack of downstream competition. This idea originates in Borenstein (1988).4 It is perhaps
more surprising that an “efficient” auction will result in production inefficiencies in the presence
of diseconomies of scale or complementarities between inputs. Our model suggests that, contrary
to intuition, allocating input by some more decentralized means and restricting resale among
firms might actually be better for consumers than organizing centralized input markets.

" Related literature. One of the first studies to investigate the interaction between upstream
and downstream markets is that of Stahl (1988). He analyzes a model in which middlemen first

2 There are also some technical differences. In the dominant firm model, unlike in ours, the dominant firm sets the
price, taking as given the supply curve of the competitive fringe.

3 Examples include the sale of electricity by generating companies to retailers; the sale of licenses to mobile phone
operators; the sale of oil tracts to production companies; the sale of forestry tracts to logging companies; and the sale of
U.S. Treasury bills at auction.

4 In contrast, McAfee (1998) argues that, when large and small incumbents compete in an auction to purchase an
additional unit of capacity, a small (constrained) firm will win the auction if there are at least two unconstrained firms.
McAfee does not consider the full dynamic game in which capacity is acquired over time. We show that, when inputs are
allocated simultaneously, the symmetric outcome that he identifies is no longer an equilibrium.
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bid for a homogeneous good, which is then resold to consumers via price competition. He finds
that, as long as the sales-revenue maximizing price in the second stage is lower than the Walrasian
price that would arise in the absence of middlemen, the same (Walrasian) price prevails in their
presence. This outcome roughly corresponds to the special case of our model where the firms’
marginal cost is constant and available capacity is less than the amount that a downstream cartel
would need to produce its optimal output. Our focus is different, though, in that we are interested
in the asymmetric firm size distribution that occurs when total capacity is large, and the surprising
effects that arise when switching between the symmetric and asymmetric regimes.5

Yanelle (1997) studies a variant of the Stahl model applied to the banking industry. In her
model, banks compete with entrepreneurs to acquire funds from small investors, and also with
other banks to finance loans to entrepreneurs. Unlike Stahl, she allows banks to ration potential
depositors, and shows that, depending on parameter values, the equilibrium may be in pure
strategies (as in Stahl) or in mixed strategies. In addition, financial disintermediation can arise,
whereby banks obtain no funds from depositors, and firms (inefficiently) obtain direct finance
from investors.

These models are close to ours in that they model the presence of “middlemen” competing
both in input and output markets. Less closely related is the large literature on vertical relations
(see Rey and Tirole, 2007, for a recent survey). Typically these models differ from ours in that
they assume that input is sold to downstream firms through bilateral contracting rather than
through a centralized market. An exception is Salinger (1988). He sets out a model of “successive
oligopoly” where Cournot firms sell intermediate goods to downstream firms that also compete
in a Cournot fashion to sell to consumers. Allocation in the input market is always symmetric and
is not efficient. Downstream firms act as price takers in the input market despite their strategic
interdependence.6

In explaining the asymmetric size distribution of firms, our article contributes to a sizeable
literature. Ghemawat (1990) studies a duopoly model where the initially larger (but not more
efficient) competitor ends up absorbing all investment opportunities in order to keep product
prices high. His model involves price competition subject to capacity constraints. Besanko and
Doraszelski (2004) set up a general dynamic investment game and show that when firms compete
in prices, an asymmetric market structure arises, but that the outcome is symmetric under Cournot
competition. In contrast to these two articles, in our model we have Cournot (quantity) competition
in the downstream market, yet we end up with an asymmetric allocation when the total available
capacity is large and not when it is small. Our work is also related to Riordan (1998), who shows
that a dominant firm facing a competitive fringe can benefit from raising its rivals’ costs by
acquiring upstream capacity which is in imperfectly elastic supply, but he assumes rather than
derives the asymmetric market structure which arises endogenously in our model.

One interpretation of the equilibrium capacity allocation in our model is that it is the optimal
allocation of a cartel in which firms collude on capacity but not on quantity (or price) setting.
Our article is therefore related to the industrial organization literature on semicollusion. In this
literature, in contrast to our article, it is typically assumed that firms collude on the transitory
strategic variable (price or quantity) but not on investment levels; see, for instance, Benoı̂t and
Krishna (1987) and Davidson and Deneckere (1990).7

Another body of work to which we contribute is the literature on auctions with externalities.
In our article, downstream competition among bidders imposes a particular structure on the

5 Stahl (1988) also studies the case where the sales-revenue maximizing price exceeds the Walrasian one. He finds
that the middlemen bid for monopoly rights to sell in the second stage. The winner charges a price between the monopoly
price and the sales-revenue maximizing one, and all middlemen make zero profits.

6 Differently from our work, the vertical relations literature typically assumes that upstream firms make take-it-or-
leave-it offers to downstream firms and downstream firms make take-it-or-leave-it offers to consumers, so no firm has
price-setting power in both markets. In this respect, our work has more in common with the literature on “middlemen.”

7 Exceptions include d’Aspremont and Jacquemin (1988), where firms may form an R&D cartel but otherwise do
not collude, and Nocke (2007), who analyzes a dynamic game where firms may collude on investment in quality.
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externalities between them, which allows us to derive more specific results than has generally
been possible in that literature (see also Katz and Shapiro, 1986, and Jehiel and Moldovanu,
2000, who consider the case when rival firms bid for a patent). Closer to our article in spirit is
Hoppe, Jehiel, and Moldovanu (2006). They consider an industry (e.g., mobile telephony) where
additional licenses to operate are allocated among incumbents and potential entrants. Incumbents
can deter entry by acquiring licenses, but entry deterrence is a public good. Hoppe, Jehiel, and
Moldovanu show that if the number of licenses per incumbent is not an integer then increasing (or
reducing) this number to an integer may help deter entry. The argument relies on the assumption
that firms can coordinate on buying only an equal number of licenses each. When the number
of licenses per incumbent is not an integer, it is assumed that the incumbents play the symmetric
mixed-strategy equilibrium (rather than an efficient, asymmetric equilibrium), which sometimes
results in inefficient miscoordination and entry.8 Our article also has the feature that increasing
the scarce resource can reduce output, but we always select efficient equilibria, and indeed the
structure of our model is completely different.

" Plan of the article. In Section 2, we outline the model and derive preliminary results. In
Section 3, we derive the unique equilibrium of our game—which is Cournot competition following
the efficient allocation of capacities—and characterize several of its properties. We analyze the
limiting case, in which the number of firms grows infinitely large, and we discuss welfare. In
Section 4, we describe some testable predictions of our model, such as the relationship between
Tobin’s Q and firm size. In Section 5, we analyze the case when competition between firms is
differentiated-goods Bertrand rather than homogeneous-goods Cournot. We further discuss the
robustness of our results in Section 6. Section 7 concludes. All omitted proofs are collected in
the Appendix.

2. Model and preliminary results
! The model is a two-stage game where in the first stage n ex ante identical firms are allocated
production capacities so that each unit of capacity ends up with the firm that values it the most.
The procedure, which is for now treated as a “black box,” may be an efficient auction, or efficient
Coasian bargaining among the firms.9 Then, in the second stage, the same firms compete—in a
Cournot fashion and subject to their capacity constraints—in a market for a homogeneous good.
The firms’ production technologies exhibit increasing marginal costs, and the market demand is
downward sloping. The participants have no private information; everything is commonly known.

In this section, we introduce the notation that formally describes this model, and perform
some preliminary analysis. In particular, we characterize certain benchmarks and solve for
the unique equilibrium of the second-period subgame (Cournot competition with capacity
constraints). This enables us to derive the equilibrium market structure and discuss its properties
in Section 3.

" Notation and assumptions. Denote the total available capacity by K , and the capacities of
the firms, determined in the first-period efficient auction or through efficient Coasian bargaining,
by ki, i = 1, . . . , n, where

∑
i ki = K .

Denote the inverse demand function in the downstream market by P(Q), where Q is total
production. We assume that P is twice differentiable, and that both P(Q) and P ′(Q)Q are strictly
decreasing for all Q > 0 . Firm i’s cost of producing qi ≤ ki units is c(qi), whereas its cost
of producing more than ki units is infinity. We assume that c is twice differentiable, strictly

8 In Janssen and Karamychev (2007), the government allocates licenses to ex ante asymmetric firms which later
compete in the product market. They show that a uniform price auction may not allocate licenses efficiently. Each firm
can buy at most one license, so input hoarding—central to our article—cannot arise.

9 We further discuss the efficiency criterion and the auction rules that yield an efficient capacity allocation toward
the end of this section.
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increasing, and strictly convex.10 Finally, we assume that producing a limited amount of the good
is socially desirable: P(Q) − c′(Q) is positive for Q = 0, and negative as Q → ∞.

The profit of firm i in the downstream market for quantity qi ≤ ki and total output from firms
other than i , Q−i, is π i(qi, Q−i) = P(Q−i + qi)qi − c(qi). The assumptions on the market demand
and individual cost functions made above are standard. They ensure that π i is concave in qi, and
that firms’ quantities are strategic substitutes. The assumptions are also known to imply that in
the Cournot game without capacity constraints, there exists a unique equilibrium. The per-firm
output in the unconstrained (noncooperative) Cournot equilibrium, denoted q NC , satisfies

∂πi (q NC , (n − 1)q NC )
∂qi

= P ′(nq NC )q NC + P(nq NC ) − c′(q NC ) = 0. (1)

We will use ri(Q−i) to refer to the best response of firm i to the total production of the
other firms, Q−i, when firm i does not face a binding capacity constraint. That is, ri (Q−i ) =
arg maxqi πi (qi , Q−i ). It can easily be verified that r ′

i (Q−i ) ∈ (−1, 0). The unconstrained Cournot
equilibrium satisfies q NC = ri((n − 1)q NC ); industry output is given by QNC = nq NC . To ease
notation, we drop the reference to firm i’s identity when referring to the best-response function
because the best-response functions are identical across the firms.

Another benchmark industry structure is that of a perfectly coordinated cartel. By definition,
the cartel allocation maximizes the firms’ joint profits. In our model, the cartel allocation is
symmetric. The total output of the cartel, QC , maximizes P(Q)Q − nc(Q/n), and so

P ′(QC )QC + P(QC ) = c′(QC/n). (2)

Note that the cartel output is less than the industry output in the Cournot equilibrium, QC <

QNC .11

" The second-period Cournot subgame. Let #i(k1, . . . , kn) denote the (indirect) profit of
firm i in the capacity-constrained Cournot game given that the capacity allocation is (k1, . . . , kn)
with

∑
i ki = K . We need to know whether #i is well defined, that is, whether there is a unique

capacity-constrained Cournot equilibrium in the downstream market for any capacity allocation.
Proposition 1 settles this issue.12 In what follows, without loss of generality and purely for the
ease of notation, we relabel the firms in increasing order of capacities, so that k1 ≤ ··· ≤ kn.

Proposition 1. For any capacity allocation k1 ≤ · · · ≤ kn with
∑

i ki = K , there is a
unique equilibrium in the capacity-constrained Cournot game. The equilibrium is qi =
ki for i = 1, . . . , m and qi = qU

m for i = m + 1, . . . , n for some m ∈ {0, 1, . . . , n}, where
qU

m solves qU
m = r (

∑m
j=1 k j + (n − m − 1)qU

m ).

Denote the capacity-constrained Cournot equilibrium given capacity allocation (k1, . . . , kn)
by (qe

i (k1, . . . , kn))n
i=1, and let the indirect profit function of firm i be

#i (k1, . . . , kn) = P

(
∑

i

qe
i (k1, . . . , kn)

)

qe
i (k1, . . . , kn) − c

(
qe

i (k1, . . . , kn)
)
.

An interesting feature of our model is that the buyers’ (firms’) marginal valuations for an
additional unit of capacity may not be monotonic in the amount of capacity that they receive. This
can be seen, at the level of intuition, for two firms as follows. When firm 1 is relatively small
(has little capacity, which is a binding constraint in the downstream Cournot competition), the
marginal value of an additional unit of capacity is positive but decreasing because expanding the
firm’s production generates a positive yet decreasing marginal profit in the downstream market.

10 We consider the limiting case of constant marginal costs in Section 3.
11 Standard results for the Cournot model can be found in Vives (1999). Our working paper (Eső, Nocke, and White,

2007) contains a complete derivation of the results stated above.
12 Cave and Salant (1995) prove the existence and uniqueness of Cournot equilibrium with capacity constraints

under constant unit costs. The proof of Proposition 1 relies only on the weak convexity of the cost function.
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FIGURE 1

FIRM i’S MARGINAL VALUE OF CAPACITY WHEN n = 2 AND K > 2q∗

However, if the firm is relatively large, so much so that its capacity constraint is slack whereas
its opponent’s constraint is binding in the downstream Cournot game, then the marginal value of
additional capacity is increasing. This is so because by buying more capacity the firm tightens
the other firm’s capacity constraint, and the returns on this activity are increasing for our firm.13

Therefore, the marginal value of capacity for firm i is U-shaped in the capacity of the firm, as
shown in Figure 1.

" Discussion of the capacity allocation mechanism. Our model employs two key as-
sumptions. We assume that a fixed amount of total capacity is allocated efficiently among the
downstream producers. The amount of capacity allocated, however, is not necessarily the efficient
one from the point of view of the downstream industry. In this section, we motivate these two
assumptions and explain how they can be compatible with one another.

The amount of capacity supplied. We have taken the upstream supply of capacity as exogenous.
For certain inputs, especially primary inputs such as coal and mineral mines as well as oil and
forestry tracts, the quantity available is indeed inelastic and determined by geology or geography.
Tradable pollution rights and spectrum are also in limited supply. In all these examples, the
seller is very often the government, which, rather than aiming to maximize revenue by limiting
supply, almost invariably wishes to allocate the entire stock of input among downstream firms.
Our assumption is therefore appropriate for these applications.

However, in other cases, the upstream input may be produced and supplied by one or more
private sellers. Our model can still apply to these cases because it can be reinterpreted as the final
subgame of a larger game where upstream firms produce the scarce input in the first stage. Suppose
that upstream producers produce quantities of the input which are then pooled and allocated to
downstream firms through one of the auction processes described in Section 4. Depending on
the number of upstream firms and their cost structures, it is clear that the equilibrium capacity
production can be at, above, or below the level that would maximize the downstream industry’s
profit. For instance, if the upstream producers of the input are in perfect competition, then the
quantity of input available for sale will be such that the marginal cost of production is equal
to the wholesale price, and there is no particular reason to suppose that this quantity is in any
way “optimal” from the point of view of maximizing downstream industry profits. Our software
engineers example fits this case: the number of individuals choosing to train as programmers may

13 These verbal statements can be verified by direct calculation in the case of two firms.
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depend on the wage available in that profession but is likely to be larger than the number which
would maximize the profits of the software industry.

Even when there is a sole seller of the input which would like to maximize revenue from
selling the input, its ability to do so may be limited by antitrust regulation. For example, in the case
of landing slots, the UK Competition Commission recently censured the privately held British
Airports Authority (BAA) because of concerns that it was failing to make the most of the landing
slots at one London airport (Stansted) as it was holding excess capacity at another (Gatwick). As
a result, BAA has been required to sell both Stansted and Gatwick (Competition Commission,
2009).

In summary, there is no strong reason to suppose that in general, the amount of capacity
available to a downstream industry will be equal to the industry profit-maximizing level.
Therefore, for the purposes of our analysis, we simply consider all possible cases. By contrast,
we will assume that the given capacity is allocated efficiently among the firms. We now discuss
this assumption.

The efficient allocation of capacity. We have assumed that the outcome of the first-period market
for capacity is an allocation that is efficient for the industry (or efficient, for short), that is,
(k1, . . . , kn) maximizes

∑
i #i(k1, . . . , kn) subject to

∑
i ki = K . Our main motivation for

adopting this assumption is that when producers compete on equal terms to purchase capacity in
a centralized, transparent market, outcomes are likely to be close to efficient. Ensuring that inputs
are allocated to those firms that value them the most was, after all, an important motivation behind
governments’ establishment of auction mechanisms as a way of distributing many scarce resources
during the last two decades (see the Introduction for specific examples). Further, to the extent
that the input allocation mechanism is controlled by the downstream firms (or the government is
“captured” by them), it is clearly in their interest to ensure that input is allocated in a way that
is efficient for the downstream firms. Notice, moreover, that in practice, when governments or
other sellers allocate capacity or inputs among producers using such mechanisms, the consumers
of the final good are not present, and their interests are not represented (Borenstein, 1989).14 So
the resulting allocation is not necessarily socially efficient.

The “efficient” allocation that we have assumed would be the literal outcome if the sale
of the K units of capacity is organized in an efficient auction among the firms that compete
in the downstream industry. Although such Vickrey-Clarke-Groves auctions are rarely seen in
practice, Bernheim and Whinston (1986) show that the same outcome results in the unique
coalition-proof Nash equilibrium of the first-price menu auction. We show in Section 4 that the
same allocation can also be implemented using the commonly used uniform-price share auction
(Wilson, 1979). Further, the outcome would be the same if capacity were allocated by Coasian
bargaining over allocations among downstream firms. One might also expect that allowing the
resale of capacity between symmetrically informed firms would eventually result in an efficient
allocation irrespective of the initial allocation.

Is there a conflict between assuming that the input is allocated efficiently and yet the quantity
allocated is not efficient from the point of view of the downstream firms? Our previous examples
illustrate that this need not be so. Typically, either upstream quantities are given (as with primary
inputs) or produced by agents that are not necessarily aiming to maximize downstream profits. But
once produced, all of those inputs must be owned by someone if they cannot easily be destroyed
or reallocated to another use. Nevertheless, to the extent that the mechanism for allocating
these resources is controlled by downstream firms or by governments aiming to allocate the
input “to those that value it the most” (or else resale between downstream firms is permitted),
one may expect the allocation of the given quantity of input to be efficient. If the objective
of the upstream seller of capacity is to maximize its revenue subject to selling all available

14 Hoppe, Jehiel, and Moldovanu (2006) note that the objective when designing the efficient auction for inputs
should be the weighted sum of the consumer and producer surpluses in the downstream market. They highlight the
difficulty of incorporating the consumer surplus in the auction design as consumers do not submit bids.
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capacity (that is, without commitment to withhold capacity), then it will also allocate it efficiently
among the downstream firms and, due to complete information, appropriate all downstream
profits.

3. Main results
! We now turn to the analysis of the equilibrium market structure in the model of Section
2. Interestingly, the market structure may be qualitatively different depending on the amount of
capacity sold in the auction. If the total capacity that is auctioned off is relatively little then
the firms behave symmetrically, whereas if it is large then the only equilibrium is asymmetric,
in which exactly one firm ends up with excess capacity and produces a larger quantity, and
the other firms constrained by their insufficient capacities produce less. First we show that the
“regime change” (from a symmetric to an asymmetric outcome) happens at a certain capacity
threshold and makes the total production drop discontinuously as the total capacity increases. We
also discuss the special case of linear costs and the limiting case of an infinite number of firms
competing for inputs.

" Industry structure in the downstream market. As a preparation for stating our results
formally, we first describe the asymmetric industry structure that prevails when K is sufficiently
large. In the efficient capacity auction, each “small” firm buys a capacity k1 = ··· = kn−1 = k∗,
whereas the “large ” firm receives the rest, kn = K − (n − 1)k∗. The capacity level of each of the
small firms, k∗, maximizes

P((n − 1)k + r ((n − 1)k))[(n − 1)k + r ((n − 1)k)] − (n − 1)c(k) − c(r ((n − 1)k)). (3)

This is the total industry profit given that (n − 1) firms produce k and one firm produces the
unconstrained best reply, r ((n − 1)k). The optimal level of k∗ satisfies the first-order condition of
the maximization,

[P ′(Q∗)Q∗ + P(Q∗)][1 + r ′((n − 1)k∗)] = c′(k∗) + r ′((n − 1)k∗)c′(r ((n − 1)k∗)), (4)

where Q∗ = (n − 1)k∗ + r ((n − 1)k∗). Note that k∗ does not vary with K .

Lemma 1. There exists k∗ satisfying (4 ) that maximizes (3) on (0, q NC ). The associated industry
output Q∗ satisfies Q∗ ∈ (QC , QNC ) whereas r ((n − 1)k∗) > q NC .

The following lemma states that if at least one firm is allocated excess capacity in the
efficient auction then the capacity allocation must be the asymmetric one described above. We
will later see that a sufficient condition for there being at least one firm with slack capacity
is that the total capacity exceeds the amount needed for producing the unconstrained Cournot
equilibrium outcome, that is, K > QNC . In the statement and proof of the lemma, recall that the
firms’ indices are ordered so that k1 ≤ k2 ≤ ··· ≤ kn.

Lemma 2. Suppose that (k1, . . . , kn) is the equilibrium capacity allocation in our game. If at least
one firm’s capacity constraint is slack, that is, kn > qe

n(k1, . . . , kn), then k1 = · · · = kn−1 = k∗ and
kn = K − (n − 1)k∗.

The result of Lemma 2 is remarkable because it pins down the industry structure in our
model whenever there is any slack capacity in the downstream market. Note that the asymmetric
allocation of capacities (k1 = ···kn−1 = k∗, kn = K − (n − 1)k∗) and the corresponding asymmetric
production (qe

1 = · · · = qe
n−1 = k∗, qe

n = r ((n − 1)k∗)) do not depend on the total amount of
available capacity, K . Observe that in this outcome, the small constrained firms indeed produce
less than the unconstrained big firm as k∗ < r ((n − 1)k∗).

We now turn to the only possibility that we have not so far considered: that no firm has
slack capacity in the Cournot game that follows the efficient capacity auction. In this case, as

C© RAND 2010.
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the production technologies are symmetric and exhibit strictly decreasing returns, the efficient
capacity allocation must be symmetric.15

In summary, the efficient capacity allocation is either asymmetric with exactly one firm
receiving excess capacity and the others all receiving k∗, or symmetric with all capacities binding
in the downstream market. Note that the asymmetric outcome can arise as the solution only when
it is feasible, that is, when K ≥ Q∗ ≡ (n − 1)k∗ + r ((n − 1)k∗). If K < Q∗ then we know the
efficient capacity allocation is symmetric, ki = K/n for all i .

The following proposition states the main result of this subsection: there exists a threshold
level of total capacity, K̂ , such that the efficient capacity allocation is symmetric for K < K̂ and
asymmetric for K > K̂ .

Proposition 2. Define K̂ ∈ (Q∗, QNC ) such that

P(K̂ )K̂ − nc(K̂/n) = P(Q∗)Q∗ − (n − 1)c(k∗) − c(r ((n − 1)k∗)). (5)

This K̂ uniquely exists. Moreover:

(i) If K < K̂ then the efficient capacity allocation is symmetric, that is, each firm receives
capacity K/n.

(ii) If K > K̂ then the efficient capacity allocation is such that all but one firm get capacity k∗

each whereas exactly one firm gets capacity K − (n − 1)k∗.

Lemma 1 and Proposition 2 imply that if capacity is sufficiently large, K > K̂ , then all but
one firm produce a positive amount but less than the per-firm output in the unconstrained Cournot
equilibrium, whereas the large (unconstrained) firm produces more than the per-firm output in
the unconstrained Cournot equilibrium. The industry output in that case is greater than that of
the collusive cartel but less than that in the unconstrained Cournot equilibrium. Even if K < K̂ ,
implying that the industry structure is symmetric, the equilibrium outcome of our model would
still differ from that of the collusive cartel unless K = QC .

An intriguing consequence of Proposition 2 is that the capacities of the firms and the total
output produced in the downstream market change discontinuously as a function of the total
available capacity at K = K̂ . In particular, the capacities of the small firms and the total output
fall by discrete amounts at K = K̂ . This is so because in the asymmetric solution (which is valid
for all K ≥ K̂ ) the small firms’ capacities are k∗ each and the total production is Q∗ , whereas
in the symmetric solution at K = K̂ , each firm has capacity K̂/n and the total production is K̂ .
However, we know that Q∗ < K̂ , hence the capacities and the output jump at K = K̂ . We depict
the capacity allocation and the resulting total industry production as a function of K in Figure 2.

Proposition 2 implies that the total (social) surplus as a function of the available capacity
is maximized at K = K̂ . The total surplus is just the sum of the firms’ profits and the consumer
surplus in the downstream market (payments to the auctioneer cancel). The total surplus is
continuous and strictly increasing for K < K̂ because K is allocated symmetrically (which is
socially desirable), all capacity is fully used in production, and the total production is lower than
the Cournot output (K < K̂ < QNC ). However, the total surplus falls discretely as K exceeds K̂ .
This is because the firms’ total profit is continuous at K = K̂ by equation (5), but the consumer
surplus falls discontinuously together with the total output in the downstream market. (The total
surplus is constant for all K > K̂ .) The policy consequence is that, if capacity is allocated
efficiently among firms, a social planner should restrict the quantity sold in the capacity auction
to K̂ whenever K exceeds K̂ .

" The special case of linear costs. It may be instructive to consider a limiting case of our
model, when the production technology exhibits constant returns, that is, c is affine. Whereas

15 By distributing the total capacity K , we essentially distribute a fixed total production among the firms because
all capacity is fully used. The most efficient way to produce a fixed quantity is by spreading it evenly across the firms.
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FIGURE 2

CAPACITIES AND TOTAL DOWNSTREAM PRODUCTION AS A FUNCTION OF K

this case is ruled out by our assumption that c is strictly convex—which has been used in the
proof of Lemma 2, for example—it is easy to check that Proposition 1 goes through with constant
marginal costs as well. Therefore, for any capacity allocation, there exists a unique equilibrium
in the follow-up Cournot game.

Proposition 2 also applies to the limiting case of affine costs, but with k∗ = 0 and consequently
K̂ = Q∗ = QC . Moreover, if K < QC , then all capacity allocations are efficient. To see this,
note first that when costs are linear, QC = r (0). Further, as r ′ > −1, firm i’s unconstrained best
response to the other firms’ joint production, r (Q−i), is at least QC − Q−i. Because QC > K and
Q−i ≤

∑
j +=i kj, the unconstrained best response is not feasible: QC − Q−i > K −

∑
j +=i kj ≡ ki.

Hence, firm i maximizes its profit by producing ki. As each firm operates at full capacity, the total
industry output and profits are the same no matter how the capacities are allocated. Therefore, all
allocations are equally efficient.

On the other hand, if K > QC , then the efficient capacity allocation is such that one firm
gets all the capacity. This follows because for any initial allocation of capacities, the production
that maximizes the firms’ joint profits is QC . However, if more than one firm is allocated a
positive capacity then the joint production in the Cournot game exceeds QC . The cartel’s profit
is maximized by shutting down all firms but one. This contrasts with the case when marginal
costs are increasing, where firms cannot achieve perfect cartelization through input allocation,
but must trade off productive efficiency against restraining output.

Note that in the special case of affine costs, as K increases beyond K̂ , there is no discrete
drop in industry output—the industry output stays constant at QC .

" Market structure with an infinite number of firms. Our preceding analysis of the market
structure is valid for any finite number of firms. In this subsection, we investigate what happens
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to the market structure as the number of firms becomes infinitely large. In particular, we are
interested in knowing whether the endogenously asymmetric market structure of our model when
K is large collapses into monopoly, perfect cartelization, or perhaps perfect competition as
n → ∞ . If the marginal cost is constant, then obviously, for all finite n and in the limit as n
→ ∞, the outcome of our model for sufficiently large capacity is monopoly. Therefore, in what
follows, we again do not consider this special limiting case of the model.

In the analysis of the prevailing market structure with an infinite number of firms, we will
assume that an infinite amount of the good can only be sold at zero price. This assumption
(together with that of a positive marginal cost) ensures that as n → ∞, the unconstrained Cournot
equilibrium converges to “perfect competition” in the sense that the per-firm production converges
to zero, and the total output converges to a quantity where the market’s willingness to pay equals
the marginal cost of any single infinitesimal firm. To see this, recall that the per-firm output in the
unconstrained Cournot equilibrium satisfies P ′(QNC )q NC + P(QNC ) = c′(q NC ). As n → ∞ , q NC

has to go to zero, otherwise limn→∞ P(QNC ) = 0 and limn→∞ P ′(QNC )q NC ≤ 0 < limn→∞c′(q NC )
yield a contradiction. If q NC → 0 then limn→∞ P(QNC ) = c′(0).

With sufficient capacity available in the auction to produce the perfectly competitive output
and the number of firms in the downstream industry tending to infinity, one might expect that the
downstream industry would approach perfect competition. However, in the following proposition,
we show that this is not the case. Instead, the efficient auction results in a kind of bottleneck in
production, so that although the small firms become vanishingly small, the single large firm
continues to absorb a large chunk of capacity and to produce a significant fraction of industry
output:

Proposition 3. Suppose limQ→∞ P(Q) = 0 and limn→∞ QNC < K . In our model, as n → ∞, k∗

converges to zero; however, (n − 1)k∗ tends to a positive number which is less than the limit of the
total industry production. The market structure remains different from monopoly, unconstrained
Cournot competition, and perfect collusion even as n → ∞.

The structure of the industry in this case is reminiscent of the classic dominant firm model
(see, e.g., Church and Ware, 2000, for a textbook treatment), where a dominant (large) firm acts as
a Stackelberg leader in setting a price or quantity and a competitive fringe of small (higher-cost)
firms best respond to this. Our model is different, however, in several ways: the position of the
dominant firm is derived endogenously as an outcome of the auction (or other efficient allocation)
which distributes capacity; the dominant firm best responds to the fringe rather than vice versa;
and the dominant firm is less efficient than the competitive fringe.

4. Tobin’s Q, firm size, and demand cycles
! In this section, we derive a testable prediction on the relationship between firm size and
Tobin’s Q: we show that the two are negatively related. Tobin’s Q is defined as the ratio of the firm’s
market value to its book value; in our model, it equals the firm’s downstream profit divided by the
cost of capacity. In order to compute this ratio—in particular, the cost of capacity—we exhibit
two payment rules associated with efficient capacity auctions. These are the Vickrey payments
(associated with the Vickrey-Clarke-Groves mechanism, as well as Bernheim and Whinston’s,
1986, first-price menu auction), and the payments in a uniform-price share auction. We show
that these payments for capacity indeed imply that Tobin’s Q and firm size are negatively related.
Finally, we investigate the comparative statics of our model with respect to demand fluctuations.
In particular, we show that a small slump in demand may lead to a relatively large drop in
downstream production, and that the industry becomes more asymmetrical and concentrated
during a contraction than it does during a demand-driven expansion.

" Payment rules in the capacity market. In the context of our model, a Vickrey-Clarke-
Groves (VCG) auction with bids that are contingent on the entire allocation constitutes an efficient
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auction. This mechanism works as follows. Participants are requested to submit their monetary
valuations for all possible allocations of the goods. The auctioneer chooses the allocation that
maximizes the sum of the buyers’ reported valuations. Then, each buyer pays the difference
between the other buyers’ total valuation in the hypothetical case that the goods were allocated
efficiently among them (excluding him) and in the allocation actually selected by the auctioneer.
The rules induce all participants to submit their valuations for every allocation honestly, and the
outcome of the auction is efficient.16

For future reference, we introduce notation for the capacity allocation and the payments
in the VCG auction. Suppose that the valuation submitted for allocation (k1, . . . , kn) by firm i
is bi(k1, . . . , kn). In the VCG auction, the auctioneer determines the allocation that maximizes∑n

i=1 bi (k1, . . . , kn). Denote this allocation by (k∗
1 , . . . , k∗

n ). The price paid by firm i , also called
the Vickrey payment, is

max

{
∑

j +=i

b j (k1, . . . , kn)

∣∣∣∣∣
∑

j +=i

k j = K

}

−
∑

j +=i

b j

(
k∗

1 , . . . , k∗
n

)
. (6)

These rules induce firm i to bid bi(k1, . . . , kn) = #i(k1, . . . , kn), that is, all firms bid honestly.
Each firm that gets something in the efficient capacity allocation pays a positive price, and each
firm obtains a nonnegative payoff from participation.

Under complete information, which is the case in our model, Bernheim and Whinston (1986)
show that the VCG outcome is also the outcome of the unique coalition-proof Nash equilibrium of
the first-price menu auction. In this auction, buyers submit bids contingent on the entire allocation
and pay their own bids for the allocation that maximizes the sum of their bids. Although this
auction has multiple equilibria, Bernheim and Whinston argue that the coalition-proof, efficient
equilibrium in which bidders submit globally truthful bid schedules is the focal one.

There are other auction forms—simpler and more widely used in practice—that also yield
an efficient capacity allocation in the context of our model. In particular, the uniform-price share
auction (Wilson, 1979) is one such mechanism. In this auction each firm i is required to submit
an inverse demand schedule, pi(ki), ki ∈ [0, K ], which specifies the highest unit price firm i is
willing to pay in exchange for ki units of capacity. The auctioneer aggregates the demands and
computes a market-clearing price. A price level, say p∗, is called market clearing if there exists
a capacity vector (k1, . . . , kn) such that

∑
i ki = K and pi(ki) = p∗ for all i . Each firm i is then

required to buy ki units of capacity at unit price p∗.

Proposition 4. There exists an equilibrium in the uniform-price share auction that implements
the efficient capacity allocation.

It is well known that the uniform-price share auction exhibits multiple equilibria, as far as
the allocation of goods and the unit price are concerned (see Wilson, 1979). A straightforward
argument as to why we would expect the capacity allocation (k∗

1 , . . . , k∗
n ) to emerge as the focal

equilibrium is that this allocation is efficient, that is, it maximizes the firms’ joint profits. As
remarked above, Coasian bargaining between firms could also implement the efficient capacity
allocation, but as it does not generate a clear prediction for the amount that firms will pay for
their capacity, we do not consider it here.

" Tobin’s Q and firm size. We now turn to the relationship between Tobin’s Q and firm size.
If K < K̂ then all firms are identical. Therefore, in this subsection, we confine attention to the
case, where K > K̂ and so the capacity allocation is asymmetric.

Tobin’s Q is formally defined as the ratio of the firm’s market value to its book value:
τi = #∗

i /Bi , where #∗
i is the firm’s equilibrium profit (representing its market value) and Bi

is the firm’s total payment for capacity (representing its book value). The market value is
given by #∗

i = #i (k1, . . . , kn), where k1 = ··· = kn−1 = k∗, kn = K − (n − 1)k∗, and k∗

16 See Krishna (2002) for a more complete discussion.
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solves (4). The book value Bi depends on the specific payment rule used in the capacity
auction.

We now derive Tobin’s Q for each one of the two auctions considered in the first subsection
of Section 4. First, suppose that each firm is required to make Vickrey payments in the capacity
auction, as defined in equation (6). Denote by %∗

−1 the total profit of a subset of (n − 1) firms when
the total capacity K is allocated only among them (i.e., excluding one firm). After a relabeling of
the firms from firm 1 to (n − 1), this allocation is k1 = · · · kn−2 = k∗

−1 and kn−1 = K − (n − 2)k∗
−1,

where k∗
−1 solves

[P ′(Q∗
−1)Q∗

−1 + P(Q∗
−1)][1 + r ′((n − 2)k∗

−1)] = c′(k∗
−1) + r ′((n − 2)k∗

−1)c
′(r ((n − 2)k∗

−1)),

with Q∗
−1 = (n − 2)k∗

−1 + r ((n − 2)k∗
−1). This equation is just equation (4) for n − 1 firms instead

of n. The Vickrey payment that a small firm makes in the VCG capacity auction (i.e., its book
value) is BV

i = %∗
−1 − (n − 2)#∗

1 − #∗
n , where i = 1, . . . , n − 1. The corresponding payment for

capacity that the large firm makes is BV
n = %∗

−1 − (n − 1)#∗
1.

Second, suppose that capacity is allocated in the uniform-price share auction, and that the
equilibrium price of a unit of capacity is p∗ > 0 . Then a small firm’s book value is BU

i = p∗k∗,
i = 1, . . . , n − 1, whereas the large firm’s is BU

n = p∗(K − (n − 1)k∗).
Depending on the type of auction used for allocating capacities, Tobin’s Q for firm i is

either τ V
i = #∗

i /BV
i (under Vickrey payments) or τU

i = #∗
i /BU

i (under the uniform-price share
auction). The following proposition establishes Tobin’s Q and firm size for both payment rules.

Proposition 5. Suppose K > K̂ . In equilibrium, Tobin’s Q satisfies τ α
1 = · · · = τ α

n−1 > τ α
n for

α ∈ {V , U}. That is, under both Vickrey payments and uniform capacity prices, there is a
negative relationship between firm size (as measured by either book or market value, capacity,
output, or sales) and Tobin’s Q.

Our model can thus help to explain the “size-discount puzzle.” Although standard models
predict that more efficient firms are larger, there is a negative relationship between Tobin’s Q (as
a measure of firm efficiency) and various measures of firm size (sales, book value) in the data.
This empirical puzzle was first pointed out by Lang and Stulz (1994); see also Eeckhout and
Jovanovic (2002).

" Output and market structure over the business cycle. Suppose that the level of aggregate
capacity K is close to the total-surplus maximizing level K̂ . (If K can change over time then there
are reasons to believe that it may gravitate to this level in the long run.) We explore how industry
output responds to small changes in demand, assuming that aggregate capacity cannot be adjusted
in the short run. We show that if K is just below K̂ then a small slump in demand is reinforced
by a large contraction of output. Further, the change in output is asymmetric: all firms but one
downsize, relinquishing their capacity to one large firm, which will then exhibit a low Tobin’s Q.
On the other hand, if K is just above K̂ then a small increase in demand induces a large expansion
of output. Again, the expansion is asymmetric: the small firms grow at the expense of the large
firm. An important implication of this result is that an “efficient ” allocation of capacity results
in a magnification of the business cycle. It also implies that industrial concentration measures
should tend to rise in recession periods.

Let P(Q; θ ) denote inverse demand if the state of demand is given by θ ≥ 0. Conditional on θ ,
we make the same assumptions on the shape of inverse demand as in Section 2 above. Further, we
assume that an increase in θ will be associated with (i) an increase in demand, ∂ P(Q; θ )/∂θ > 0 for
all Q > 0, limθ→0 P(Q; θ )Q/n < c′(Q/n) for Q > 0, and limθ→∞ P(Q; θ ) + Q∂ P(Q; θ )/∂ Q >

c′(Q/n) for Q > 0; and (ii) less price-elastic demand, ∂2 P(Q; θ )/∂ Q∂θ ≥ 0 for all Q > 0.
These assumptions subsume the special case where an increase in the level of demand means a
replication of the population of consumers, leaving consumers’ tastes and incomes unchanged so
that inverse demand can be written as P(Q; θ ) ≡ P̃(Q/θ ) and satisfies P̃ ′(·) < 0.
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The following proposition shows that the equilibrium industry structure is more asymmetric
in a demand slump (θ < θ̂ ) than during a boom (θ > θ̂).

Proposition 6. There exists a threshold demand level θ̂ (K ) such that K̂ (θ ) < K if and only if
θ < θ̂(K ) and K̂ (θ ) > K if and only if θ > θ̂ (K ). That is, if demand is low, θ < θ̂(K ) , the efficient
auction induces the asymmetric capacity allocation (k∗(θ ), . . . , k∗(θ ), K − k∗(θ )), whereas if
demand is high, the efficient auction induces the symmetric capacity allocation (K/n, . . . , K/n).

The following corollary is an immediate implication of Proposition 6.

Corollary 1. Consider two demand levels θ 0 and θ 1 such that θ0 < θ̂ (K ) < θ1 and θ 1 − θ 0 is
arbitrarily small. Then, an increase in the demand parameter from θ 0 to θ 1 leads to a discrete
increase in industry output as the capacity allocation switches from being asymmetric to being
symmetric.

In other words, around the capacity threshold, a small change in demand leads to a
disproportionate change in output. This result may be of interest to macroeconomists, as it
suggests that cyclical changes in demand will be exaggerated in industries where capacity is
scarce and is allocated efficiently. This may be surprising, because one might expect that in
industries where most firms are capacity constrained, cyclical changes in demand would be
dampened rather than amplified, but in fact in our model the reverse is true. It is also possible to
study the cyclical behavior of marginal costs and markups as demand fluctuates in our model (see
Rotemberg and Woodford, 1999, for a survey of the evidence and macroeconomic literature on
this topic). Interestingly, contrary to the usual supposition in macroeconomics, average markups
do not have to be countercyclical for the business cycle to be amplified in our setup, because
we do not have a representative firm model. Indeed, examples can be constructed where the
average markup rises discretely as the demand parameter θ crosses the threshold θ̂ (K ) from
below. Despite this discrete increase in markups, output also jumps up at this point because the
change in industry structure results in a discrete increase in productive efficiency at the same
time.

5. Differentiated Bertrand competition
! In this section, we consider differentiated-products Bertrand competition in the downstream
market instead of homogeneous-goods Cournot competition, implying that firms compete in
strategic complements instead of strategic substitutes. We restrict attention to the case of two
firms. The purpose of analyzing this extension is to show that our main results are not due to
some particular property of the Cournot model.17

Assume that there are two firms that simultaneously set prices, denoted by pi (i = 1, 2).
The demands for their goods are q1 = Q(p1, p2) and q2 = Q(p2, p1), respectively, where Q is
decreasing in its first and increasing in its second argument. The firms have capacity constraints
ki (i = 1, 2), which are determined in the first stage of the game.

We model differentiated Bertrand competition subject to capacity constraints as in Maggi
(1996). If firm i faces a demand qi ≤ ki then its cost is c(qi); if qi > ki then its cost is c(qi) + θ (qi −
ki), where c is a strictly increasing function and θ is a large positive number. Verbally, this means
that the firms (constrained or not) always serve the entire demand they face; however, producing
beyond their respective capacity constraints carries a drastic monetary penalty. This assumption
allows us to sidestep the issue of rationing when demand exceeds capacity.18 Therefore, we

17 As we restrict attention to two firms, we cannot show that our result that at most one firm is capacity constrained
among any number of firms is robust to this extension. Intuitively, however, it seems easier to keep output low when one
firm holds excess capacity than when several do.

18 Rationing does not arise in the Cournot model with capacity constraints. Using this model, we essentially assume
it away in the Bertrand model.
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can focus on the main qualitative difference between Bertrand and Cournot models: strategic
complements versus strategic substitutes.

We assume that for all capacity allocations (k1, k2) with k1 + k2 = K , there exist prices (p1,
p2) such that Q(p1, p2) = k1 and Q(p2, p1) = k2. In order to ensure that the price vector that
gives rise to demands that equal the capacities is unique, we assume that for all (p1, p2), Q1(p1,
p2) + Q2(p1, p2) < 0, where Qi denotes ∂ Q/∂ pi for i = 1, 2. As a result of this assumption, firm
1’s “iso-demand curve,” p2(p1), defined implicitly by Q(p1, p2(p1)) ≡ k1, has a slope greater
than one: p′

2 = −Q1/Q2 > 1. Therefore, the iso-demand curves intersect only once, hence the
point (p1, p2) where Q(p1, p2) = k1 and Q(p2, p1) = k2 is unique.

Firm 1’s profit when its capacity constraint is slack is π (p1, p2) = p1 Q(p1, p2) − c(Q(p1,
p2)). Assume that π is strictly concave in p1, and define firm 1’s unconstrained reaction function
as r (p2) = arg maxp1 π (p1, p2). By symmetry, r is the unconstrained reaction function of firm 2
as well. Assume that r is differentiable with r ′ ∈ (0, 1), which implies that there exists a unique
equilibrium without capacity constraints, where both firms set pB = r (pB). These assumptions
could be expressed in terms of the true fundamentals (the functions Q and c) but, in the interest of
brevity, we keep them in this form.19 Denote the per-firm equilibrium output in the unconstrained
differentiated Bertrand model by q B = Q(pB , pB).

If Q(r (p2), p2) > k1, that is, firm 1’s best response to firm 2’s price yields a demand for firm
1’s good that exceeds its capacity, then by the concavity of π (p1, p2), the optimal (constrained)
response for firm 1 is to set p1 > r (p2) such that Q(p1, p2) = k1. By symmetry, the same is
true for firm 2: in case its unconstrained best response is not feasible, Q(r (p1), p1) > k2, then its
constrained best response to p1 is p2 > r (p1) such that Q(p2, p1) = k2.

Our first result is that for all initial capacity allocations, there is an equilibrium in the ensuing
differentiated Bertrand model with capacity constraints.

Lemma 3. For all k1, k2 with 0 < k1 ≤ k2 and k1 + k2 = K , there exists an equilibrium in the
capacity-constrained Bertrand game.

The next issue is to determine the capacity allocation that maximizes the sum of the firms’
profits subject to the constraint that for any initial capacity allocation (k1, k2) the equilibrium
described in the previous lemma is played.

If the capacity allocation leads to a downstream equilibrium in which both firms are
constrained then their joint profit is

p∗
1 Q(p∗

1, p∗
2) − c(Q(p∗

1, p∗
2)) + p∗

2 Q(p∗
2, p∗

1) − c(Q(p∗
2, p∗

1)),

where (p∗
1, p∗

2) is such that k1 = Q(p∗
1, p∗

2) and k2 = Q(p∗
2, p∗

1), as in Case 2 in the proof of the
lemma. Change variables so that p∗

1 = P1(k1, k2) and p∗
2 = P2(k1, k2) and rewrite the joint profit

as

P1(k1, k2)k1 − c(k1) + P2(k1, k2)k2 − c(k2). (7)

We will assume that this expression is maximized in k1 and k2 ≡ K − k1 at k1 = k2 = K/2.
Although (7) is symmetric in k1 and k2, this amounts to an additional, mild assumption. The
assumption is made in the spirit of the original (Cournot) model, where the firms’ joint profit
maximizing quantity choice is symmetric as well.

Let K C denote the joint production of a “cartel,” that is, the value of K that maximizes
[P1(K/2, K/2) + P2(K/2, K/2)]K/2 − 2c(K/2). By definition (and the assumption in the
previous paragraph), if the total capacity is K C , then the optimal capacity allocation is k1 = k2 =
K C/2.

The symmetric allocation can be optimal only for K not exceeding the joint production in
the unconstrained Bertrand equilibrium, 2q B . We now argue that even at K = 2q B it is strictly
better for the firms to allocate the total capacity asymmetrically, so that the smaller firm (denoted

19 The reader may consult Vives (1999) for details.
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by firm 1) becomes capacity constrained whereas the other firm becomes unconstrained in the
ensuing equilibrium.

Suppose toward contradiction that each firm has capacity q B and plays the unconstrained
equilibrium by setting price pB . Recall that q B = Q(pB , r (pB)). Now reduce k1 and increase k2

by the same infinitesimal amount, dk = [Q1(pB , pB) + Q2(pB , pB)r ′(pB)]dp. By construction,
firm 1 remains exactly capacity constrained if it increases its price by dp and firm 2 increases it
by r′(pB) dp. On the other hand, the same change in prices makes firm 2 unconstrained because
the total demand decreases (as both prices go up) whereas the total capacity remains the same.
Therefore, the resulting prices, pB + dp and r(pB + dp), form an equilibrium where firm 1 is
constrained and firm 2 is unconstrained. We just need to show that the joint profit is higher in the
new equilibrium. The change in the joint profit can be written as

d [π (p1, r (p1)) + π (r (p1), p1)]
dp1

∣∣∣∣
p1=pB

=
[
π1(pB, pB) + π2(pB, pB)

] [
1 + r ′(pB)

]
,

where π j denotes the derivative with respect to the j th argument. This expression is positive,
however, because π 1(pB , pB) = 0 by the equilibrium condition, whereas π 2(pB , pB) > 0 and r ′

> 0.
We have so far established that for a total capacity level of K = K C the optimal capacity

allocation is symmetric, whereas for K = 2q B , the optimal allocation is asymmetric. By continuity
(i.e., as the problem of optimal capacity allocation is continuous in K ), there must exist an
intermediate value of K , call it K̃ , where the optimal capacity allocation changes from symmetric
to asymmetric. At such K , the joint profit of the firms is the same from splitting K̃ equally and
allocating it optimally in an asymmetric fashion. If the production technology exhibits strictly
decreasing returns (i.e., c is strictly convex) then there is a discrete drop in the social surplus as
K increases past K̃ . This is the exact same phenomenon that we found in the Cournot model. We
summarize our findings regarding the differentiated Bertrand model in the following proposition.

Proposition 7. In the differentiated Bertrand model with two firms, for some (low) values of K
the efficient capacity allocation is symmetric, whereas for some other (high) values of K it is
asymmetric. There exists a threshold value K̃ ∈ (K C , 2q B) where the efficient capacity allocation
changes from symmetric to asymmetric. Around K̃ , a small increase in the total available capacity
reduces the social surplus.

6. Discussion and extensions
! In this section, we discuss the robustness of our results to various alternative specifications
of the model.

" Alternative models of capacity. In this article, we have modelled the scarce input for
which firms compete as capacity. Each firm’s production is determined by a generalized “Leontief-
type” technology with decreasing returns to scale and “capacity ” as an essential and constraining
input. It is an interesting question whether our results extend to competition for other types of
potentially scarce inputs.

We have investigated the robustness of our results to two different ways of modelling inputs.
First, one could imagine that a firm’s capacity does not provide a strict upper bound on its
production, but instead exceeding capacity simply increases its marginal cost of production.
For concreteness, suppose that each firm’s marginal cost is zero up to its capacity, and linearly
increasing with output beyond that point (with no jumps).20 In this variant, direct calculations
show that there exists a capacity threshold K̂ below which the equilibrium allocation is symmetric
and all firms are “constrained” (produce beyond their capacities), whereas for a total capacity

20 The kink in the marginal cost curve turns out not to be important because in equilibrium, firms never operate at
this point.
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above K̂ the allocation is asymmetric with one large unconstrained firm and (n − 1) identical
constrained firms. As in our original model, output and social welfare drop discontinuously as
total capacity crosses the threshold.21

Second, we consider a Cobb-Douglas technology with decreasing returns to scale where
one of the inputs is scarce and is allocated efficiently prior to the production stage. In contrast
to our base model, this variant allows firms to substitute other inputs (with perfectly elastic
supply) for the scarce resource. Despite this ability to substitute, our main results continue to
hold. When the available amount of the scarce input is small, it will be allocated symmetrically
across firms, whereas when it is large, the allocation is asymmetric with one firm acquiring all of
the scarce input. Again, output and social welfare drop discretely as input availability crosses the
threshold between symmetric and asymmetric allocations.22 Intuitively, when the input is in very
limited supply, the most important consideration for the firms is to ensure productive efficiency,
whereas when the input is relatively plentiful, it is more important for them to limit production
by allocating it asymmetrically.

" Alternative (dynamic) input allocation mechanisms. In light of the finding that the
“efficient capacity auction” yields an asymmetric and socially undesirable outcome in the
downstream market, it is important to know for policy purposes whether other auctions (which
are not efficient from the perspective of the capacity buyers) would yield socially better outcomes.

Dynamic auctions, where each unit of capacity is auctioned off separately over time, may
be good candidates for such mechanisms. Suppose, for example, that the total capacity to be sold
is divided into small units. At each point in time, one “unit” of capacity is sold at a second-price
auction, with no discounting between periods. At first glance, it may seem surprising that this
mechanism does not yield the same “efficient” result as the ones considered in Section 4. In
fact, if K is sufficiently large and there are constant returns to scale, then the dynamic auction
proposed above is socially more desirable than those auctions.23 The brief intuition for this result
is the following. Under constant returns to scale, an “efficient” capacity auction would allocate
all available capacity to one firm. In order to get the same result in the dynamic auction, one
firm would have to outbid all the others for each capacity unit, and pay the marginal profit of the
first capacity unit every time. As the marginal profit of capacity is decreasing, this is unprofitable
for the large firm and monopoly cannot be sustained. It is an open question whether a dynamic
auction would do socially better than the mechanisms studied in Section 4 under decreasing
returns to scale.

7. Conclusion
! In this article, we have examined the behavior of an industry requiring a scarce input
(“capacity”) which is in fixed supply, when the input is allocated through an efficient auction or
other equivalent process, such as Coasian bargaining. After the input is allocated, firms compete
subject to the capacity constraints imposed by their prior purchases in a Cournot (or, in an
extension, differentiated-goods Bertrand) game.

We have shown that under these circumstances, firms with ex ante symmetric production
technologies end up in either a symmetric or an asymmetric equilibrium, depending on whether the
available amount of input is smaller or larger than a certain threshold, respectively. The asymmetric
equilibrium features one large firm which hoards input, with all other firms relatively small and
constrained by their input purchases: thus, the input is allocated in a way that is productively
inefficient. This implies that, around the capacity threshold, an increase in the amount of input

21 The calculations described in this paragraph are available from the authors upon request.
22 Numerical calculations supporting these claims are available from the authors upon request.
23 This is established in a related model by Krishna (1993). However, dynamic auctions of capacity can lead to

entry deterrence in an oligopoly; see Dana and Spier (2007).
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available will tighten rather than ease the input constraints which most firms face, and will lead
to a drop in total output.

The intuition behind these results is that when the input is extremely scarce, the firms’ priority
is efficient production. Instead, when the input is abundant, production efficiency is sacrificed in
favor of lower production and higher prices, which are attained by a wasteful asymmetric input
allocation. This intuition does not rely on the scarce resource being capacity. Indeed, as discussed
in Section 6, our main results generalize to the case where there is substitutability between the
scarce resource and other inputs.

We showed that our model yields testable implications on the cross-sectional relationship
between firm size and profitability (Tobin’s Q) which seem to be consistent with available evidence.
We also explained how small changes in demand will be amplified into much larger changes in
output in our model as firms switch from asymmetric to symmetric equilibria. Our model might
thus form the basis of an interesting macroeconomic model of business cycles.

Our model also has implications for microeconomic policy, as it suggests that allocating
input through efficient auctions may be misguided when the bidders are competing firms (see also
the references cited in the Introduction). More surprisingly, it shows that trying to increase input
availability can easily be a misguided policy measure in such markets—even though firms face
binding capacity (or input) constraints, an increase in input availability will lead to a reduction in
output if it leads to a change in industry structure. Rather than encourage entry into the upstream
market, it might be preferable to change the method by which the input is allocated. A more
in-depth analysis of these issues is beyond the scope of this article, but constitutes an interesting
avenue for future research.

Appendix

" Omitted proofs

Proof of Proposition 1. If the total industry production is Q and firm i’s production is qi , then firm i’s marginal profit is

∂πi (qi , Q−i )
∂qi

∣∣∣∣
Q−i =Q−qi

= P ′(Q)qi + P(Q) − c′(qi ). (A1)

This expression is strictly decreasing in qi because P ′ < 0 and c′ ′ ≥ 0, and it becomes negative if qi is sufficiently large.
Therefore, in equilibrium, if the total production is Q and firm i ’s capacity constraint is slack, then firm i produces a
quantity qU (Q) such that

qU (Q) = min
{
qi ≥ 0|P ′(Q)qi + P(Q) − c′(qi ) ≤ 0

}
. (A2)

If firm i’s capacity constraint is less than qU (Q) then it produces ki. Note that all firms whose capacity constraints are
slack produce the same output, qU (Q).

The function qU (Q) is continuous, and by the implicit function theorem its derivative is

dqU (Q)
d Q

= − P ′′(Q)qU (Q) + P ′(Q)
P ′(Q) − c′′(qU (Q))

.

If qU (Q) ≤ Q then P ′ ′(Q)qU (Q) + P ′(Q) < 0 by assumption. This, combined with P ′ < 0 and c′ ′ ≥ 0, implies that
dqU (Q)/d Q < 0 whenever qU (Q) ≤ Q.

Define

h(Q) =
n∑

i=1

min
{
ki , qU (Q)

}
− Q. (A3)

Clearly, Q∗ ∈ [0, K ] and h(Q∗) = 0 if and only if Q∗ is the total production in a capacity-constrained Cournot equilibrium.

We claim that there exists a unique Q∗ ∈ [0, K ] that satisfies h(Q∗) = 0. To see this, first note that qU (0) > 0 by
equation (A2), hence h(0) > 0 by equation (A3). If Q ≥ K ≡

∑
i ki then equation (A3) yields h(Q) ≤ 0. As qU (Q) is

continuous, h(Q) is continuous as well. Therefore, by the intermediate value theorem, there exists Q∗ ∈ (0, K ] such that
h(Q∗) = 0. If Q < K then, by (A3), h(Q) ≤ 0 implies that qU (Q) < ki for some i , and therefore qU (Q) ≤ Q. As a result,
qU (Q) is strictly decreasing, and so is h(Q), for all Q ∈ [Q∗, K ). As h(Q∗) = 0, we have h(Q) < 0 for all Q ∈ (Q∗, K ].
Therefore, any Q∗ ∈ [0, K ] such that h(Q∗) = 0 is unique.
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Proof of Lemma 1. To see existence, consider k∗ = 0. Denote QM ≡ r (0). The left-hand side of equation (4) becomes
[
P ′(QM )QM + P(QM )

]
(1 + r ′(0)) = c′(QM )(1 + r ′(0)),

where the equality follows from the first-order condition of a monopolist. The right-hand side of equation (4) is c′(0)(1
+ r ′(0)), which is strictly less than the left-hand side by the convexity of c. Hence, (3) is increasing in k at k = 0.

Consider now k∗ = q NC . The left-hand side of equation (4) becomes
[
P ′(QNC )QNC + P(QNC )

]
(1 + r ′((n − 1)q NC )) < c′(q NC )(1 + r ′((n − 1)q NC )),

where the inequality follows from QNC > QC and by the fact that the left-hand side of equation (2) is decreasing in Q
whereas its right-hand side is increasing in Q. Hence, (3) is decreasing in k at k = q NC . Hence, by continuity, (3) has
an interior maximum k∗ ∈ (0, q NC ) that solves equation (4). As k∗ < q NC , q NC = r ((n − 1)q NC ), and r ′ ∈ ( − 1, 0), it
follows that r ((n − 1)k∗) > q NC .

To see that Q∗ > QC , suppose toward contradiction that Q∗ ≤ QC . By assumption on demand, P ′(QC )QC +
P(QC ) ≤ P ′(Q∗)Q∗ + P(Q∗). By (2) and (4),

c′
(

QC

n

)
≤ c′(k∗) + r ′((n − 1)k∗)c′(r ((n − 1)k∗))

1 + r ′((n − 1)k∗)
.

By r ′ ∈ ( − 1, 0), k∗ < r ((n − 1)k∗), and the convexity of c, the right-hand side is less than c′(k∗). However, k∗ < Q∗/n
≤ QC/n. Hence, c′(k∗) < c′(QC/n), a contradiction.

To see that Q∗ < QNC , consider the following thought experiment. Starting from each firm producing QNC/n,
reduce the production of the first n − 1 firms to k∗ each, and allow firm n to produce r ((n − 1)k∗). As r ′ ∈ ( − 1, 0),
industry output must fall. Hence, Q∗ < QNC .

Proof of Lemma 2. We will argue that if some firm or firms have excess capacity and (k1, . . . , kn) differs from the
proposed asymmetric capacity allocation, then there exists some perturbation that increases the total industry profit
thereby contradicting the efficiency of (k1, . . . , kn).

First, we show that under the hypothesis of the lemma, there is at least one firm whose capacity constraint is binding
in the downstream market. Suppose toward contradiction that all firms are unconstrained. Then they each produce q NC ,
where q NC < ki . Redistribute capacities so that for all i < n, ki = q NC , and kn = K − (n − 1)q NC . This change does not
affect the downstream equilibrium production of any firm. Then, carry out the following perturbation: reduce the capacity
of each firm except firm n by an infinitesimal amount, dq, and increase kn by (n − 1)dq. As a result, the total production
changes: firm n gains dqn = r ′((n − 1)q NC )(n − 1)dq, whereas the other firms lose a combined d Q−n = (n − 1)dq. As
r ′ > −1, the change in total production is negative, that is, dqn + d Q−n < 0. The change in the total industry profit is

d# = ∂πn(q NC , (n − 1)q NC )
∂qn

dqn + ∂πn(q NC , (n − 1)q NC )
∂ Q−n

d Q−n

+
n−1∑

i=1

[
∂πi (q NC , (n − 1)q NC )

∂qi
dq + ∂πi (q NC , (n − 1)q NC )

∂ Q−i

(
dqn + n − 2

n − 1
d Q−n

)]
.

q NC is the unconstrained per-firm Cournot equilibrium quantity, therefore

∂πi (q NC , (n − 1)q NC )
∂qi

= 0 for all i = 1, . . . , n.

By symmetry,

∂πi (q NC , (n − 1)q NC )
∂ Q−i

= ∂π j (q NC , (n − 1)q NC )
∂ Q− j

for all i, j = 1, . . . , n.

Using these facts, the expression for d# simplifies to

d# = ∂πn(q NC , (n − 1)q NC )
∂ Q−n

d Q−n +
n−1∑

i=1

∂πi (q NC , (n − 1)q NC )
∂ Q−i

(
dqn + n − 2

n − 1
d Q−n

)

= ∂πn(q NC , (n − 1)q NC )
∂ Q−n

(n − 1) (d Q−n + dqn) .

By ∂π n/∂ Q−n < 0 and dqn + d Q−n < 0, the change in total industry profit is positive, that is, d# > 0. The perturbation
of capacities increases the firms’ total profit, hence the original distribution of capacities was not efficient, which is a
contradiction.

For n = 2, the previous argument establishes that exactly one firm has excess capacity. We now prove that the same is
true for n > 2 as well. Suppose toward contradiction that more than one firm has excess capacity, that is, due to the way firms
are indexed, qe

n−1(k1, . . . , kn) < kn−1. Note that the capacity of firm 1 is binding, therefore qe
1 (k1, . . . , kn) = k1 < qn−1.

Redistribute all excess capacity from firms 2 through n − 1 to firm n; this obviously does not change the production levels.
Denote the new capacity levels by (k̃1, . . . , k̃n). Now decrease k̃n−1 = qe

n−1(k1, . . . , kn) by dq and increase k̃1 = k1 by dq.
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As firm 1’s capacity is a binding constraint for its production, qe
1 increases by dq as well. As a result, the total production

of all firms is unchanged. However, as the cost functions are strictly convex and the distribution of production among the
firms has become less asymmetrical (we have increased qe

1 , decreased qe
n−1, and qe

1 < qe
n−1 at the initial capacity levels),

the total industry profit increases. The original allocation of capacities was not maximizing the total industry profit, which
is a contradiction.

We conclude that if the capacity auction is efficient and there is a firm with excess capacity in the downstream market,
then it is firm n (i.e., there can only be one firm with slack capacity). Due to symmetry, the allocation of capacities that
maximizes the total downstream industry profit subject to the constraint that firm n best responds to the joint production
of the other firms is the same for firms 1 through n − 1, that is, k1 = ··· = kn−1 = k∗. The capacity-constrained firms each
produce k∗, whereas the unconstrained firm produces r ((n − 1)k∗). The optimal capacity constraint, k∗, maximizes the
total industry profit, (3).

Proof of Proposition 2. We already know that the efficient capacity allocation is either symmetric, where ki = K/n for
all i and all capacity constraints bind, or asymmetric as in Lemma 2, where ki = k∗ for i < n and kn = K − (n − 1)k∗.
Note that the former allocation is the efficient one when the latter is not feasible, that is, K < Q∗.

Recall that we say that the capacity allocation is efficient when it maximizes the total industry profit in the capacity-
constrained Cournot game. In the downstream market following the symmetric capacity allocation, the total industry
profit is P(K )K − nc(K/n), which is strictly concave in K . Moreover,

P(Q∗)Q∗ − nc(Q∗/n) > P(Q∗)Q∗ − (n − 1)c(k∗) − c(r ((n − 1)k∗)) (A4)

because c is strictly convex and k∗ < Q∗/n < r ((n − 1)k∗). On the other hand, if the total capacity equals the total
output in the unconstrained Cournot equilibrium, K = QNC , then at least one firm must be unconstrained in any capacity
allocation, hence by Lemma 2 the efficient allocation is the asymmetric one, and so

P(QNC )QNC − nc(QNC/n) < P(Q∗)Q∗ − (n − 1)c(k∗) − c(r ((n − 1)k∗)).

Therefore, by continuity, there exists K̂ ∈ (Q∗, QNC ) such that if K > K̂ , the asymmetric allocation is efficient, whereas
if K < K̂ , the symmetric allocation is efficient. At K = K̂ , the two allocations generate the same industry profits, that
is, K̂ is defined by (5).

Proof of Proposition 3. Under our assumptions, the per-firm Cournot output converges to zero as the number of firms
goes to infinity. As k∗ is less than q NC for any given n, it must also converge to zero.

We claim that (n − 1)k∗ cannot converge to zero as n → ∞ . If it did then, by the first-order condition of profit
maximization in monopoly,

[
P ′(r (0))r (0) + P(r (0))

] [
1 + r ′(0)

]
= c′(r (0))

[
1 + r ′(0)

]
.

The right-hand side exceeds c′(0) + r ′(0)c′(r (0)) as c is strictly convex. But this contradicts (4), the first-order condition
characterizing k∗, for n sufficiently large.

Finally, we claim that if the total industry production converges to Q̄∗ as n goes to infinity then limn→∞(n − 1)k∗ <

Q̄∗. In other words, the output of the unconstrained firm does not shrink to zero as the number of firms grows large. (Its
output is greater than q NC for any finite n, but q NC goes to zero as n goes to infinity.) Suppose toward contradiction that
r (Q̄∗) = 0. By the definition of the best-response function, P(Q̄∗) = c′(0). This contradicts the first-order condition that
defines k∗ for n sufficiently large, because as n → ∞, by (4), P ′(Q̄∗)Q̄∗ + P(Q̄∗) = c′(0), and hence P(Q̄∗) > c′(0).

Proof of Proposition 4. Pick a positive p∗ such that p∗k∗
i < #i (k∗

1 , . . . , k∗
n ) for all i . Recall that k∗

1 = · · · = k∗
n−1 = k∗

and k∗
n = K − (n − 1)k∗ > k∗. We will define an equilibrium where, given the other (n − 1) firms’ equilibrium strategies

(inverse demand schedules), each firm is indifferent to use any strategy in response, and therefore they each use their
proposed equilibrium strategy. In this equilibrium, firms i = 1, . . . , n − 1 submit the same schedule, p∗

1 (·), whereas firm
n submits p∗

n (·), and the induced allocation of capacity is (k∗
1 , . . . , k∗

n ).
Denote #∗

i = #i (k∗
1 , . . . , k∗

n ) for i = 1, . . . , n. Let

p∗
1 (k1) = #1(k1, . . . , k1, K − (n − 1)k1) − #∗

n + p∗k∗
n

K − (n − 1)k1
. (A5)

We claim that this inverse demand bid function makes firm n indifferent to submit any bid function. To see this, note that
if firm n’s bid results in it getting capacity kn then the other firms each receive capacity k1 = (K − kn)/(n − 1), and the
unit price of capacity becomes p∗

1 ((K − kn)/(n − 1)). Using (A5), firm n’s profit is

#1 (k1, . . . , k1, kn) − p∗
1 (k1) kn = #∗

n − p∗k∗
n .

Hence, firm n is indifferent between inducing any capacity kn and k∗
n . Now we construct an inverse demand schedule for

firm n that makes any other firm (say, firm (n − 1)) indifferent to submitting any demand schedule (given that the other
(n − 2) firms use p∗

1 ) and, together with p∗
1 defined in (A5), induces the allocation (k∗

1 , . . . , k∗
n ).
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For all k1 ≤ K/(n − 2), define kn(k1) as the lowest non-negative number such that

#n−1(k1, . . . , k1, kn−1, kn) − p∗
1 (k1)kn−1 ≤ #∗

n−1 − p∗k∗
n−1, (A6)

where kn−1 ≡ K − kn − (n − 2)k1. Such kn(k1) is well defined because at kn = K − (n − 2)k1, the left-hand side of (A6)
becomes zero, whereas the right-hand side is a positive constant, so (A6) holds as a strict inequality. Note also that if
kn(k1) is positive then (A6) holds as an equality. Now let p∗

n (kn(k1)) ≡ p∗
1 (k1). Defining p∗

n this way guarantees that when
firms i = 1, . . . , n − 2 submit p∗

1 and firm n submits p∗
n , the best response of the remaining firm, firm n − 1, is to submit

p∗
1 as well. This is so because by submitting an inverse demand schedule, firm n − 1 can induce any capacity allocation

(k1, . . . , k1, kn−1, kn), where kn = kn(k1) and the unit price of capacity is p∗
1 (k1) ≡ p∗

n (kn). In particular, if firm n − 1
submits p∗

1 then the induced allocation is (k∗
1 , . . . , k∗

n ) = (k∗, . . . , k∗, K − (n − 1)k∗) and the unit price is p∗ = p∗
1 (k∗).

By (A6), the net profit of firm n − 1 is maximized by inducing exactly this allocation.

Proof of Proposition 5. In equilibrium, firms 1 to (n − 1) are identical, therefore τ α
1 = · · · = τ α

n−1 for α ∈ {V , U}.

(i) Suppose α = V (Vickrey auction). Now τ 1 > τ n is equivalent to

#∗
1

%∗
−1 − (n − 2)#∗

1 − #∗
n

>
#∗

n

%∗
−1 − (n − 1)#∗

1

.

Cross-multiplying and rearranging yields, equivalently,

#∗2
n + (n − 2)#∗

n#
∗
1 − (n − 1)#∗2

1 > #∗
n%

∗
−1 − #∗

1%
∗
−1.

Factoring out (#∗
n − #∗

1) yields
(
#∗

n − #∗
1

) [
#∗

n + (n − 1)#∗
1

]
>

(
#∗

n − #∗
1

)
%∗

−1.

As #∗
n > #∗

1, this is equivalent to #∗
n + (n − 1)#∗

1 > %∗
−1, which holds because the VCG allocation is efficient for

the firms.
(ii) Suppose α = U (uniform-price share auction). Note that k∗ < K − (n − 1)k∗. Firms 1 to n − 1 produce each an

output of k∗, whereas the large firm n produces r ((n − 1)k∗) ∈ (k∗, K − (n − 1)k∗). Let Q∗ = (n − 1)k∗ + r ((n −
1)k∗) denote industry output. Then, #∗

1 = P(Q∗)k∗ − c(k∗) and #∗
n = P(Q∗)r ((n − 1)k∗) − c(r ((n − 1)k∗)).

We need to show that τ 1 > τ n, that is,

P(Q∗)k∗ − c(k∗)
p∗k∗ >

P(Q∗)r ((n − 1)k∗) − c(r ((n − 1)k∗))
p∗ [K − (n − 1)k∗]

.

Multiplying both sides by p∗ > 0, we get

P(Q∗) − c(k∗)
k∗ > P(Q∗)

r ((n − 1)k∗)
K − (n − 1)k∗ − c(r ((n − 1)k∗))

K − (n − 1)k∗ .

This inequality indeed holds because k∗ < r ((n − 1)k∗) < K − (n − 1)k∗ and c is strictly convex. Hence, τ 1 > τ n.

Proof of Proposition 6. Let

ϕ(K ; θ ) ≡ P(K ; θ )K − nc(K/n) − {P(Q∗; θ )Q∗ − (n − 1)c(k∗) − c(r ((n − 1)k∗; θ ))}, (A7)

and

ψ (q; θ ) ≡ P((n − 1)k∗ + q; θ ) + q
∂ P((n − 1)k∗ + q; θ )

∂ Q
− c′(q), (A8)

where r ((n − 1)k∗; θ ) is defined by the first-order condition ψ(r ((n − 1)k∗; θ ); θ ) = 0, Q∗ ≡ (n − 1)k∗ + r ((n − 1)k∗;
θ ), and k∗ (which depends on θ ) maximizes the expression in curly brackets in equation (A7). As we have shown before,
the threshold capacity level K̂ is uniquely defined by ϕ(K̂ ; θ ) = 0.

We first show that d K̂/dθ > 0. As ∂ϕ(K̂ ; θ )/∂K < 0, it follows from the implicit function theorem that d K̂/dθ > 0
if and only if ∂ϕ(K̂ ; θ )/∂θ > 0. Applying the envelope theorem (as k∗ maximizes the expression in curly brackets above),
we obtain

∂ϕ(K̂ ; θ )
∂θ

= K̂
∂ P(K̂ ; θ )

∂θ
− Q∗ ∂ P(Q∗; θ )

∂θ

−
[

P(Q∗; θ ) + Q∗ ∂ P(Q∗; θ )
∂ Q

− c′(r ((n − 1)k∗; θ ))
]

∂r ((n − 1)k∗; θ )
∂θ

.

From (A8), the first-order condition ψ(r ((n − 1)k∗; θ ); θ ) = 0, and Q∗ > r ((n − 1)k∗; θ ) it follows that the expression
in brackets is negative. As r ((n − 1)k∗; θ ) is the large firm’s best response, we have ∂ψ(r ((n − 1)k∗; θ ); θ )/∂q < 0, and
so (from the implicit function theorem), ∂r ((n − 1)k∗; θ )/∂θ > 0 if and only if ∂ψ(r ((n − 1)k∗; θ ); θ )/∂θ > 0. Indeed,

∂ψ (r ((n − 1)k∗; θ ); θ )
∂θ

= ∂ P(Q∗; θ )
∂θ

+ r ((n − 1)k∗; θ )
∂2 P((n − 1)k∗ + q; θ )

∂ Q∂θ
< 0.
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FIGURE A1

ILLUSTRATION FOR LEMMA 3

Hence, ∂r ((n − 1)k∗; θ )/∂θ . We now claim that K̂∂ P(K̂ ; θ )/∂θ < Q∗∂ P(Q∗; θ )/∂θ . To see this, recall that K̂ < Q∗.
From our assumption on the cross-partial derivative of inverse demand, it then follows 0 < ∂ P(K̂ ; θ )/∂θ < ∂ P(Q∗; θ )/∂θ .
Hence, ∂ϕ(K̂ ; θ )/∂θ > 0, and so d K̂/dθ > 0.

We now show that K̂ → 0 as θ → 0. Our assumptions on inverse demand imply that for any fixed K > 0,
limθ→0ϕ(K ; θ ) < 0. The assertion then follows from the observation that ϕ(K ; θ ) is strictly concave in K . Next, we show
that K̂ → ∞ as θ → ∞. To see this, note that ϕ(K ; θ ) is maximized at K = QC , the perfectly collusive cartel output,
which is implicitly defined by

P(QC ; θ ) + QC ∂ P(QC ; θ )
∂ Q

− c′(QC/n) = 0.

Observe that QC → ∞ as θ → ∞. Otherwise, if QC were bounded from above, the left-hand side of the above equation
would become strictly positive for θ sufficiently large; a contradiction. As K̂ > QC , the assertion is indeed correct.

Summing up, we have shown that K̂ is strictly increasing with θ , K̂ → 0 as θ → 0, and K̂ → ∞ as θ → ∞.
Hence, there exists a unique θ̂ such that K > K̂ if and only if θ < θ̂ and K < K̂ if and only if θ < θ̂ .

Proof of Lemma 3. If k1 ≥ q B then both firms are capable of producing the unconstrained Bertrand equilibrium output.
It is immediate that both firms setting pB forms an equilibrium. (The same prices form an equilibrium when the firms do
not have capacity constraints. The only action that is not available to a firm without a capacity constraint that is available
to it with a capacity constraint is decreasing its price so much that the capacity constraint becomes binding. However,
such a move clearly cannot be profitable. Therefore, there is no profitable deviation from equilibrium for either firm as
long as their capacities exceed the equilibrium output without capacity constraints.)

In the rest of the proof assume k1 < q B . Find p0
1 such that Q(p0

1, r (p0
1)) = k1. Note that p0

1 > pB because
Q(pB , r (pB )) = q B > k1 and Q(p1, r (p1)) is decreasing in p1.24 We distinguish two cases depending on whether or
not k2 exceeds Q(r (p0

1), p0
1).

Case 1. Q(r (p0
1), p0

1) ≤ k2. We claim that (p0
1, r (p0

1)) is an equilibrium.

24 This is so because d Q(p1, r (p1))/d p1 = Q1 + Q2r ′ < Q1 + Q2 < 0.
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Firm 2 is best responding to firm 1’s price without violating its capacity constraint, and therefore it has no profitable
deviation.

Firm 1’s unconstrained best response to r (p0
1) would be r (r (p0

1)). As p0
1 > pB and r ′ ∈ (0, 1), we have p0

1 >

r (p0
1) > pB , which then implies (by the same argument) that r (p0

1) > r (r (p0
1)) > pB . But then Q(r (r (p0

1)), r (p0
1)) > k1,

that is, firm 1’s best response to r (p0
1) violates its capacity constraint, because Q(p0

1, r (p0
1)) = k1, p0

1 > r (r (p0
1)), and Q

is decreasing in its first argument. Therefore, firm 1’s constrained best response to r (p0
1) is p0

1 , the price for which the
capacity constraint holds as an equality.

Case 2. Q(r (p0
1), p0

1) > k2. In this case, find (p∗
1 , p∗

2 ) such that Q(p∗
1 , p∗

2 ) = k1 and Q(p∗
2 , p∗

1 ) = k2. We claim that
(p∗

1 , p∗
2 ) is an equilibrium.

First note that p0
1 < p∗

1 and p∗
2 < p∗

1 . The first inequality holds because Q(p0
1, r (p0

1)) = Q(p∗
1 , p∗

2 ) = k1,
Q(r (p0

1), p0
1) > Q(p∗

2 , p∗
1 ) = k2, and Q1 + Q2 < 0. Intuitively (graphically), we move along firm 1’s iso-demand curve

starting from (p0
1, r (p0

1)) in the direction where firm 2’s demand decreases, so p∗
1 > p0

1 and p∗
2 > r (p0

1). The second
inequality follows because k1 < k2, and the firms are symmetric.

Now we verify that both firms play constrained best responses. As for firm 1, r (p∗
2 ) < p∗

1 because p∗
1 > pB and

p∗
1 > p∗

2 . Therefore, firm 1’s unconstrained best response to p∗
2 would violate its capacity constraint, and hence its

constrained best response is indeed p∗
1 . As for firm 2, r (p∗

1 ) < p∗
2 as well; this is so because as we increase p1 from p0

1 to

p∗
1 while keeping Q(p1, p2) constant (at k1), the change in p2 is greater than the increase in 2’s best response. (Graphically,

firm 1’s iso-demand curve is steeper than firm 2’s reaction curve. See Figure A1.) By r (p∗
1 ) < p∗

2 , the unconstrained best

response of firm 2 violates its capacity constraint, and hence its constrained best response is p∗
2 .
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