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Abstract
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1 Introduction

Gravity equations have been the predominant tool for analyzing the determinants of bilateral

trade flows since their introduction by Tinbergen (1962) over 60 years ago. In their most

basic form, gravity equations predict that trade between countries is a log-linear function

of the economic mass of the two trading partners and bilateral frictions such as distance

or tariffs. Even in this simple form, gravity equations have substantial explanatory power,

often explaining in excess of 70-80% of the variation in the trade flows between countries.

Starting with Anderson (1979), researchers have shown that gravity equations can be derived

from a number of mainstream theoretical frameworks, allowing a tight link to economic

welfare analysis. Not surprisingly then, gravity equations have become the workhorse tool

for evaluating trade-related economic policies, such as tariffs, trade agreements or WTO

membership.

Despite the rapid progress that research on gravity equations has made over the past

decades, existing approaches remain at odds with a key stylized fact about international

trade, however: much of world trade is dominated by a small number of large firms. The

classic example is the market for wide-bodied passenger aircraft which comprises just two

firms (Airbus and Boeing); but the markets of many other tradable goods such as cars, mobile

phones or television sets are also dominated by a handful of large producers. That is, in the

language of Gaubert and Itskhoki (2021), trade flows are “granular”. Given their size, it

seems likely that such “granular” firms enjoy substantial market power and have incentives

to internalize the effects of their actions on aggregate market outcomes. In this paper, we

evaluate the consequences of oligopolistic behavior for the estimation of gravity equations.

Under oligopoly, standard approaches to gravity estimation deliver inconsistent estimates

of key parameters, such as the trade elasticity with respect to distance. The reason is that

markups co-vary systematically with bilateral variable trade costs (e.g., distance or tariffs)

and are contained in the error term of the gravity equation. The key intuition is that firms

selling in destinations with higher bilateral trade costs face higher marginal costs, and that

these higher marginal costs are incompletely passed through under oligopoly.1 This induces

a classical omitted variable bias, which leads to an under-estimation of the trade elasticity:

The value of exports does not fall as much with variable trade costs as it would fall if markups

were held constant, because firms systematically reduce markups when selling to destinations

with higher trade costs.

1For evidence on incomplete cost pass-through in the industrial organization and international trade
literatures, see Feenstra (1989), Nakamura and Zerom (2010), Burstein and Gopinath (2014), Ganapati,
Shapiro, and Walker (2020), and Genakos and Pagliero (2022).
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We derive firm- and industry-level gravity equations from a rich heterogeneous-firm model

with oligopolistic competition and product differentiation based on Atkeson and Burstein

(2008). Consumers have CES preferences with industry-specific demand elasticities and firms

draw idiosyncratic productivity and quality shocks. We show that this model generates a

gravity equation both at the firm and industry level. We also propose methods for consistent

estimation of gravity-equation parameters.

Specifically, we show how to eliminate the oligopoly bias by constructing a correction term

that purges observed trade flows from oligopolistic market power effects. At the firm level,

the correction term uses information on firms’ market shares and demand elasticities. At the

industry level, the correction term takes the form of an origin-destination-level Herfindahl

index (HHI) of exporters multiplied by the exporting country’s aggregate market share in the

destination market. This is intuitive: exporters’ markups are high if exports are concentrated

in a small number of firms that have a large aggregate market share in the destination.

In our empirical applications, we use firm- and industry-level data on exports of French

and Chinese firms to European countries, and therefore focus on distance as the only bilateral

trade cost variable.2 We show that failing to account for oligopoly leads to a substantial

underestimation of the distance elasticity of trade flows.3 At the firm level, the average

oligopoly bias is in excess of 40%. At the industry level, the bias is around 10% for the

average industry but it is substantially larger in a significant minority of industries, in which

exports tend to be highly concentrated.

To confirm the validity of our empirical approach, we perform a detailed Monte Carlo

study. We calibrate our rich heterogeneous-firm CES oligopoly model to match key statistics

of the French and Chinese micro-level trade data, and use it to generate a simulated dataset.

We then run firm- and industry-level gravity regressions on that dataset, and find that our

oligopoly corrections do very well in recovering the distance coefficient. By contrast, without

the oligopoly correction, we obtain a bias of similar magnitude to that in the regressions run

on the actual data.

Finally, we use our calibrated model to evaluate the welfare effects of a 10% trade cost

reduction. We find that the resulting welfare gains are almost twice as high under oligopoly

as under monopolistic competition. This is driven both by the larger estimated distance

coefficient under oligopoly compared to monopolistic competition, and by additional pro-

2Because of the restriction to European destinations (for reasons outlined below), there is insufficient
variation to include other common gravity variables. However, our methodology naturally applies also to
policy-relevant variables such as tariffs and regional trade agreements.

3As a result, the estimated distance elasticity of trade costs is biased downwards. Using price data for
shipments and estimates of cost pass-through to account for variable markups, Atkin and Donaldson (2015)
also find such a downward oligopoly bias.
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competitive gains from trade due to reduced markups.

Related literature. Our paper builds on the literature deriving theory-consistent grav-

ity equations. Anderson (1979), Eaton and Kortum (2002), Anderson and van Wincoop

(2003), Chaney (2008), Melitz and Ottaviano (2008), Arkolakis, Costinot, and Rodriguez-

Clare (2012), Arkolakis, Costinot, Donaldson, and Rodriguez-Clare (2019) and Allen, Arko-

lakis, and Takahashi (2020) show how to obtain aggregate/industry-level gravity equations

from a variety of theoretical frameworks. We contribute to this literature by deriving theory-

consistent gravity equations at the firm- and industry level under oligopoly.

Another strand of the literature, surveyed by Head and Mayer (2014), is concerned with

the estimation of gravity equations. We contribute to this literature by proposing methods

to estimate gravity equations when firms have market power. Anderson and van Wincoop

(2003) highlight the importance of controlling for ‘multilateral resistance’ (i.e., the price

index in the destination). Harrigan (1996) was the first to do so using destination fixed

effects, an approach that has been followed in most subsequent studies, including the present

paper. Santos Silva and Tenreyro (2006) advocate the use of the Poisson Pseudo Maximum

Likelihood (PPML) estimator to address a potential bias arising from heteroscedasticity

in log-linearized models—an approach that we also follow. An important problem for the

estimation of gravity estimations arises from firms self-selecting into export markets. At the

firm level, Bas, Mayer, and Thoenig (2017) propose to focus on top exporters that are present

in most destinations.4 At the industry/aggregate level, Helpman, Melitz, and Rubinstein

(2008) propose a two-step estimation procedure, which in addition to the standard Heckman

correction also controls for the extensive margin of exports. We adopt both approaches in

this paper.

Our paper is among the first to use gravity estimates to evaluate the welfare effects of trade

policies under oligopoly. Arkolakis, Costinot, and Rodriguez-Clare (2012) identify a class of

models with monopolistic or perfect competition in which the trade elasticity is constant and

constitutes (in conjunction with countries’ trade shares) a sufficient statistic for the welfare

gains from trade.5 Arkolakis, Costinot, Donaldson, and Rodriguez-Clare (2019) extend this

approach to a class of monopolistic competition models with variable markups, assuming that

productivities are Pareto-distributed. They show empirically that gains from trade are lower

when markups are variable rather than constant. While our model does not admit a sufficient

statistic, we ask a related but different question: are the gains from trade higher or lower

4By focusing on the largest exporters, however, this approach is likely to exacerbate the oligopoly bias,
thus making it even more important to control for market power.

5See, however, Melitz and Redding (2015) who emphasize the role of micro structure for the gains from
trade in models that do not fit the assumptions of Arkolakis, Costinot, and Rodriguez-Clare (2012).
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under oligopoly, which features variable markups, compared to monopolistic competition

with constant markups? We find significantly larger welfare gains under oligopoly. This is

in line with Edmond, Midrigan, and Xu (2015) who calibrate a two-country version of the

oligopoly model of Atkeson and Burstein (2008) to assess the gains from trade.6

In the last decade, there has been a revived interest in integrating oligopoly into models

of international trade, partially building on earlier contributions by the strategic trade policy

literature (see Brander, 1995). The by-now dominant framework, which we also adopt, was

proposed by Neary (2003) and further developed by Atkeson and Burstein (2008). It features

a continuum of oligopolistic industries, implying that firms have market power in their own

industry but not in the aggregate. Quantitative papers that build on this framework include

Edmond, Midrigan, and Xu (2015) and Gaubert and Itskhoki (2021).7

The rest of the paper is organized as follows. In Section 2, we present our theoretical

framework and derive oligopoly correction terms for firm- and industry-level gravity equa-

tions. In Section 3, we describe the data sources, discuss estimation challenges, and present

the empirical results from our firm-level gravity estimations. In Section 4, we repeat these

steps for our industry-level gravity estimations. In Section 5, we provide Monte Carlo sim-

ulations to evaluate the performance of our estimation procedures. In Section 6, we use a

calibrated version of our model to study the welfare gains from trade-cost reductions. Finally,

we conclude in Section 7.

2 Gravity Equations under Oligopoly

In this section, we first present the oligopoly model underlying our approach to gravity with

granular firms. Next, we derive gravity equations at both the firm and industry level.

2.1 Theoretical Framework

We consider a multi-country world with a continuum of industries, indexed by z ∈ Z. We

denote by Jn(z) the set of industry-z products sold in country n. We assume that demand

6Heid and Stähler (2024) propose an extension of Arkolakis, Costinot, and Rodriguez-Clare (2012)’s
formula to evaluate the gains from trade under oligopoly. To recover the necessary parameters, they derive a
firm-level gravity equation in oligopoly. However, they estimate it from aggregate trade data, assuming the
economy consists of a large number of identical industries, each of which hosts only one firm per country.
They also find that the welfare gains from trade liberalization are substantially larger under oligopoly.

7Other papers introducing oligopoly into international trade models include Eckel and Neary (2010),
Parenti (2018), Breinlich, Nocke, and Schutz (2020), and Head and Mayer (2023).
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and inverse demand for any such product i ∈ Jn(z) take a CES form:8

qin(z) = ain(z)pin(z)
−σ(z)Pn(z)

σ(z)−1En(z) (1)

pin(z) = ain(z)
1

σ(z) qin(z)
− 1

σ(z)Qn(z)
−σ(z)−1

σ(z) En(z),

where En(z) denotes the total expenditure on industry-z products in country n, ain(z) the

perceived quality of product i in country n, and σ (z) > 1 the elasticity of substitution in

industry z. The industry-z CES price index and composite commodity in country n are

denoted by Pn(z) and Qn(z), respectively, and given by

Pn(z) ≡

 ∑
j∈Jn(z)

ajn(z)pjn(z)
1−σ(z)

 1
1−σ(z)

and Qn(z) ≡

 ∑
j∈Jn(z)

ajn(z)
1

σ(z) qjn(z)
σ(z)−1
σ(z)


σ(z)

σ(z)−1

.

From now on, we focus on a single industry and drop the index z.9

Each product i ∈ Jn is offered by a unique firm and produced at constant marginal cost

cin. For the firm to sell product i in country n, it incurs iceberg-type trade cost τin so that

its profit from selling qin units in destination n is πin = (pin − τincin)qin.

Firms compete in quantities in each market n, being able to segment markets perfectly.10

Under oligopoly, firms take into account the impact of their quantity choices on the CES-

composite, Qn. For what follows, it is useful to generalize further the degree of strategic

interaction between firms by introducing a conduct parameter, λ (see Bresnahan, 1989):

when firm i increases its output qin by an infinitesimal amount, it perceives the induced effect

on Qn to be equal to λ∂Qn/∂qin. Under monopolistic competition, the conduct parameter λ

takes the value of zero, whereas it is equal to one under Cournot competition. The first-order

condition of profit maximization of firm i in destination n is given by

0 =
∂πin

∂qin
=

En

Q
σ−1
σ

n

a
1
σ
in

σ − 1

σ
q
− 1

σ
in − σ − 1

σ
λ
∂Qn

∂qin

Ena
1
σ
inq

σ−1
σ

in

Q
σ−1
σ

+1
n

− τincin

8As is well known, such a demand function could be derived, for example, from a two-tier utility function,
with Cobb-Douglas at the upper tier and CES at the lower tier. In Section 5, we use a quasi-linear version
of that utility function to generate the same demand.

9The framework we lay out here can be viewed as being general equilibrium. However, as we focus on a
given equilibrium and do not conduct comparative statics at the aggregate level, we refrain from explicitly
closing the model by writing down factor market-clearing conditions and endogenizing consumer income.
Closing the model would be straightforward. For example, we could assume that the demand system has
been derived from the maximization of a two-tier utility function, with Cobb-Douglas at the upper tier, and
then assign a labor endowment to each country, assume that all costs are incurred in terms of origin-country
labor, choose labor in a reference country as the numeraire, and assume that profits and tariff revenues are
distributed lump sum to domestic consumers.

10We focus on quantity competition here and present results for price competition in Online Appendix C.
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=
σ − 1

σ
pin (1− λsin)− τincin, (2)

where

sin ≡ a
1
σ
inq

σ−1
σ

in∑
j∈Jn

a
1
σ
jnq

σ−1
σ

jn

(3)

is the market share of firm i in destination n.

Rearranging terms in equation (2) yields firm i’s optimal markup in destination n:

µin =
1

σ
+ λ

σ − 1

σ
sin, (4)

where µin ≡ (pin − τincin) /pin is the Lerner index. Under monopolistic-competition conduct

(λ = 0), the usual constant markup 1/σ obtains. If instead λ > 0, then markups are no

longer constant and depend positively on market shares. We will make use of the additional

flexibility afforded by the conduct parameter λ in Section 2.3, but for now, we assume Cournot

conduct and set λ = 1.

2.2 Firm-Level Gravity in Oligopoly

From the definition of the Lerner index, firm i’s price in market n is pin = cinτin/(1 − µin).

Using equation (1), the value of its sales can be written as

rin = pinqin =

(
cinτin
1− µin

)1−σ

ainP
σ−1
n En. (5)

We log-linearly decompose the quality and cost terms as log ain = εai + εan + εain and log cin =

εci + εcn+ εcin, respectively. We further decompose trade costs as log τin = βXin+ ετi + ετn+ ετin

whereXin includes variables with bilateral variation such as (log) distance, common language,

or dummies for the presence of trade agreements or currency unions.

Taking the logarithm of equation (5) yields the firm-level gravity equation

log rin = ξn + ζi + β(1− σ)Xin + (σ − 1) log (1− µin) + εin, (6)

where ξn and ζi summarize destination- and firm-specific terms, and εin = εain+(1− σ) (εcin + ετin)

collects the dyadic unobservables. Obtaining a consistent estimate of β(1−σ), the coefficients

on the bilateral variables, is a key objective of much of the gravity literature.

If the data were generated from monopolistic competition, the markup term involving µin

in equation (6) would be constant and could be subsumed in ζi. In that case, estimation of

equation (6) would yield a consistent estimate of β(1−σ), provided that firm and destination
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fixed effects (ξn and ζi) are included and that the usual identifying assumption made in the

gravity literature hold.11 To back out β requires, of course, knowledge of σ—either from

another source or from the gravity estimation itself, provided Xin contains bilateral tariffs.12

Suppose instead that the data are generated from oligopoly, which is likely to be the case

in many industries. Then, the markup term—which is a function of firms’ market shares—

will go into the error term, introducing a correlation between the latter and the regressors of

interest, Xin. For example, to the extent that firms face larger variable trade costs in more-

distant markets, their market shares are lower there, ceteris paribus. (This is indeed borne

out by the data; see Table 2 below.) Hence, firms charge lower markups in such destinations,

implying a positive correlation between distance and the omitted variable, log(1− µin), and

thus a bias in the estimate of the distance coefficient.13,14

The solution that we now propose allows us to obtain consistent estimates of both the

structural parameter β (or β(1− σ)) and the effect of changes in gravity variables on trade

flows. Specifically, suppose that we have data on market shares and also an estimate of σ.

Computing firm i’s markup in destination n as

µ̂in =
1

σ̂
+

σ̂ − 1

σ̂
sin,

we can then “purge” the observed trade flows from oligopolistic market power effects as

11For least-squares estimation of the log-linearized gravity equation, the identifying assumption is
E [εin|Xin, ξn, ζi] = 0. This assumption does not rule out correlations between the bilateral variables and
taste, production and trade cost shocks working through the firm- and destination-level components (εai , ε

a
n,

εci , ε
c
n, ε

τ
i and ετn). Such correlations are not a problem, as these components can be controlled for through

firm and destination fixed effects. If the data contain a time dimension, one can also allow for time-invariant
bilateral elements in the error term which can be captured through bilateral fixed effects—as is standard,
e.g., in the literature on the trade effects of preferential trade agreements (see Baier and Bergstrand, 2007).

12In the latter case, the coefficient on log(1 + tin), where tin is the ad valorem tariff, can be shown to be
equal to 1− σ.

13As markups vary at the firm-destination level, their variation cannot be controlled for by firm and
destination fixed effects. The inclusion of firm-destination fixed effects would make it impossible to identify
separately the effect of key regressors of interest such as distance, tariffs or dummy variables for trade
agreements. Having a time dimension in the data would not help either because markups would then vary
by firm, destination, and time.

14If firms compete in prices instead of quantities, then the equilibrium markup of firm i in destination n
satisfies µin = 1/(σ−(σ−1)sin) (see Online Appendix C.1 for a theoretical treatment of the price competition
case). A first-order approximation around sin ≃ 0 yields

µin ≃ 1

σ
+

σ − 1

σ2
sin,

implying that markups are less sensitive to market shares under price competition than under Cournot compe-
tition (compare equation (4)). We therefore expect the oligopoly bias to be smaller under price competition.
Our empirical results confirm this intuition (see Table 3 below and Table A in Online Appendix C.2).
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follows:

log r̃in ≡ log rin − (σ̂ − 1) log (1− µ̂in) . (7)

Combining equations (6) and (7), we obtain a standard gravity equation for the purged trade

flows:

log r̃in = ξn + ζi + β(1− σ)Xin + εin. (8)

Under the usual identifying assumption (see footnote 11), the empirical specification in equa-

tion (8) allows us to obtain a consistent estimate of β(1− σ) and thus of β.15,16

Above, we assumed access to a prior estimate of σ. Such a prior estimate is not required

if Xin contains information on tariffs (tin). In Appendix B, we show that the standard

identifying assumption, E [εin|Xin, tin, ξn, ζi] = 0, can then be used to form moment conditions

and estimate σ and β by GMM.

In addition to the structural parameters, trade economists are often interested in esti-

mating the effect of changes in the gravity variables on trade flows, holding fixed (monadic)

firm and destination characteristics; that is, in E[∇Xin
log rin|Xin, ξn, ζi]. In Appendix A.3,

we show that the partial effect of the gravity variables, conditional on sin, is given by:17

E[∇Xin
log rin|Xin, sin, ξn, ζi] = β(1− σ)

1

1 + (σ − 1) sin
1−sin

. (9)

This partial effect—which incorporates the firm’s endogenous markup adjustment—can be

computed using our estimates of β and σ, and data on market shares. The average partial

effect can then be computed by integrating over the distribution of market shares. That is,

our solution to the oligopoly bias allows us to obtain both the structural parameter and the

effect of gravity variables on trade flows. By contrast, regressing observed trade flows on the

bilateral variables and fixed effects does not, in general, yield a consistent estimate of the

average partial effect of gravity variables on trade flows.18

15Note the parallel to the literature on trade and quality which uses a similar approach to correct export
values or quantities (e.g., Khandelwal, Schott, and Wei, 2013).

16The alternative approach of writing the markup term explicitly as a function of market shares and
including it as a regressor does not deliver a consistent estimate of the structural parameters. To see this,
note that equation (6) can be rewritten as

log rin = ξn + ζi + β(1− σ)Xin + (σ − 1) log (1− sin) + εin,

where we have used equation (4). As log (1− sin) is correlated with both Xin and εin, least-square estimation
does not yield a consistent estimate of β(1− σ).

17As is standard in the gravity literature, the price index in the destination country is held fixed when
computing the effect.

18Due to markup adjustments, the conditional expectation E[log rin|Xin, ξn, ζi] is highly nonlinear in
(Xin, ξn, ζi). Hence, the estimate from such a regression would be a weighted average of the slopes
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2.3 Industry-Level Gravity in Oligopoly

We now turn to gravity at the industry level. We first analyze the equilibrium in a given

market using an aggregative games approach (Nocke and Schutz, 2018; Anderson, Erkal, and

Piccinin, 2020). We then leverage Nocke and Schutz (2024)’s approximation techniques to

derive an industry-level gravity equation that accounts for oligopolistic behavior.

An aggregative games approach to industry equilibrium. Consider industry z in

destination n. Dropping reference to z to ease notation, we define the market-level aggregator

Hn as

Hn ≡ Q
σ−1
σ

n =
∑
j∈Jn

a
1
σ
jnq

σ−1
σ

jn

and firm i’s type Tin, a measure of quality-adjusted productivity, as

Tin ≡ a
1
σ
in

(
En

cinτin

σ − 1

σ

)σ−1
σ

. (10)

Combining these definitions with equations (2) and (3), we obtain:

1− λsin = s
1

σ−1

in

(
H

Tin

) σ
σ−1

. (11)

As the left-hand side is non-increasing in sin and the right-hand side is strictly increasing

in sin, the equation has a unique solution in sin, denoted S(Tin/Hn, λ)—the market-share

fitting-in function. It is easily verified that S(·, ·) is strictly increasing in its first argument

and strictly decreasing in its second.

The equilibrium level of the aggregator, H∗(λ), is pinned down by market shares adding

up to one: ∑
i∈Jn

S

(
Tin

Hn

, λ

)
= 1. (12)

The uniqueness of the solution follows by the strict monotonicity of the market-share fitting-

in function.

To summarize:

Proposition 1. In each destination market n, and for any conduct parameter λ, there exists a

unique equilibrium in quantities. The equilibrium aggregator level H∗
n(λ) is the unique solution

to equation (12). Each firm i’s equilibrium market share is s∗in(λ) = S(Tin/H
∗
n(λ), λ), where

S(Tin/H
∗
n(λ), λ) is the unique solution to equation (11).

E[∇Xin log rin|Xin, ξn, ζi], but with weights being generally different from the density of (Xin, ξn, ζi) (see,
e.g., Yitzhaki, 1996; Angrist and Pischke, 2009).
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Proof. See Appendix A.1

The first-order approach to industry-level gravity. Let Jon ⊊ Jn denote the subset

of exporters from country o that sell in the destination market n. Their aggregate exports

to market n are given by s∗onEn, where s∗on(λ) ≡
∑

i∈Jon
s∗in(λ). We are interested in these

aggregate exports when firms compete in a Cournot fashion, i.e., when λ = 1. Unfortunately,

there is no closed-form solution to s∗on(1). Our approach therefore entails approximating it.

As we show in the following, the approximation relies on two Herfindahl indices, namely

the HHI of all firms selling in the destination market n,

HHIn(λ) ≡
∑
j∈Jn

(
s∗jn(λ)

)2
,

and the HHI among the exporters in country o that sell in the destination market n,

HHIon(λ) ≡
∑
j∈Jon

(
s∗jn(λ)

s∗on(λ)

)2

.

We obtain:

Proposition 2. At the first order, in the neighborhood of λ = 0 (monopolistic-competition

conduct), the logged joint market share in destination n of the firms from origin o is given by

log s∗on(λ) = log s∗on(0) + (σ − 1)
[
HHIn(λ)− s∗on(λ)HHIon(λ)

]
λ+ o(λ).

Proof. See Appendix A.2.

The proposition shows that the joint market share of the exporters from country o differs

from the one that would obtain under monopolistic competition by a market-power term

that takes account of both the overall concentration in the destination market and the con-

centration among the country-o exporters.

This result motivates the following approximation:

log s∗on(0) ≃ log s∗on(1)− (σ − 1)
[
HHIn(1)− s∗on(1)HHIon(1)

]
.

Thus, the export flow that would obtain under monopolistic competition is approximately

given by

log(En) + log s∗on(1)︸ ︷︷ ︸
log ron

−(σ − 1)
[
HHIn(1)− s∗on(1)HHIon(1)

]
,
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where ron is the (actually observed) export flow under oligopoly. As the HHIn term will be

subsumed in the destination fixed effect, we define

log r̃on ≡ log ron + (σ − 1)son HHIon (13)

as the value of the export flow from o to n purged from market-power effects, which can be

computed with data on ron, son and HHIon, and an estimate of σ.19

Next, we derive a gravity equation for oligopoly-corrected trade flows log r̃on. To do so,

we impose the following structure on the quality, marginal-cost and trade-cost terms:

log ain = log ai + εao + εan + εaon,

log cin = log ci + εco + εcn + εcon,

log τin = βXon + ετo + ετn + ετon.

Combining this with equation (5) (with µin = 1/σ), adding up over all the exporters from o

to n, and taking the logarithm, yields a gravity equation of the following form:

log r̃on = ξo + ζn + β(1− σ)Xon + ϕon + εon, (14)

where ξo is an origin fixed effect, ζn is a destination fixed effect,

ϕon ≡ log
∑
j∈Jon

ajc
1−σ
j ,

and

εon ≡ εaon + (1− σ)(εcon + ετon).

If the set of exporters from origin o were the same in all destinations n (i.e., if Jon were

independent of n), then the term ϕon would be subsumed into the origin fixed effect. In

that case, regressing log r̃on on origin and destination fixed effects, and the bilateral variables

Xon would yield a consistent estimate of β(1−σ), provided the usual identifying assumption

E [εon|Xon, ξo, ζn] = 0 holds.

If, instead, the set Eon does depend on n because of self-selection into export destinations,

then ϕon is no longer absorbed by the origin fixed effect, and is likely to be correlated with

19If firms compete in prices instead of quantities, then the market power term in equation (13) becomes
[(σ−1)/σ]son HHIon (see Proposition B in Online Appendix C.1). That is, the oligopoly correction term under
price competition is equal to that under quantity competition divided by σ. We therefore expect the oligopoly
bias to be smaller under price competition, as was the case for firm-level regressions (see footnote 14). Our
empirical results confirm this intuition (see Table 8 below and Table B in Online Appendix C.2).
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Xon. In Section 4 below, we discuss how to address such self-selection issues and obtain a

consistent estimate of β(1− σ).

We can also approximate the effect of changes in gravity variables on trade flows for a

given set of exporters from o to n. We focus on this intensive-margin effect for two reasons.

First, this is also the effect of interest at the firm level. Second, the overall effect of trade

costs on trade flows, which would include the extensive-margin effect through self-selection

into exporting, is generally not constant, as competition is oligopolistic and productivities are

not (necessarily) Pareto-distributed. In Appendix A.3, we derive the following approximation

(around small market shares) of the intensive-margin effect:

E[∇Xon log ron|Xon, son,HHIon, ξo, ζn] ≃ β(1− σ) [1− (σ − 1)son HHIon] . (15)

This expression can be computed using the estimate of β(1−σ) and data on aggregate market

shares and Herfindahl indices.

3 Empirical Implementation: Firm-Level Gravity

In this section, we show how to empirically implement our gravity-estimation approach at

the firm level. Our empirical specification is

log r̃inzt = ξnzt + ζizt + β(1− σ)Xin + εinzt, (16)

where

log r̃inzt ≡ log rinzt − (σ̂ − 1) log (1− sinzt) , (17)

corresponding to equations (8) and (7) in Section 2.2 above, except that we have made here

the industry (z) and time (t) dimensions explicit and made use of equation (4). Due to

data limitations explained below, we focus on distance as our only gravity variable, so that

Xin boils down to the scalar log(diston), where diston is the distance between firm i’s origin

o and destination n. In the following, we discuss estimation challenges, present our data,

run gravity regressions with and without oligopoly correction, and investigate under what

circumstances ignoring oligopolistic behavior leads to quantitatively important biases.

Estimation Challenges. A first issue is how to control for destination fixed effects ξnzt

in a setting with firm-level export data. With export data from a single origin country, we

would not be able to separate the impact of bilateral variables from the destination fixed
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effects.20 To address this issue, we follow Bas, Mayer, and Thoenig (2017) by combining two

datasets on the exports of French and Chinese firms, respectively.

Secondly, we have to address self-selection issues, as most firms export only to a subset of

possible destinations. When estimating equation (16), observations with zero trade flows drop

out. In the presence of export fixed cost, there is selection into exporting in our model: firms

selling in more distant foreign markets will be more likely to have received a favorable taste,

productivity, or trade-cost shock for that destination, allowing them to operate in this more

difficult environment. As a consequence, the conditional expectation E [εinzt|Xin, rinzt > 0] is

likely to depend onXin. To address this issue, we adapt an approach proposed by Bas, Mayer,

and Thoenig (2017) and restrict our estimation sample to the largest three French firms and

the largest three Chinese firms in each industry, as measured by total industry-level exports,

added up over all destinations. As those firms are generally very productive, produce high-

quality products (low εcizt and/or high εaizt), or use low-cost market-access technologies (low

ετizt), they are likely to serve most destinations, so that the destination-specific shocks (εcinzt,

εainzt, and ετinzt) do not play an important role in their market entry decisions. We acknowledge

that this is an imperfect solution but our simulation evidence presented in Section 5 shows

that focusing on top exporters does indeed substantially reduce selection bias. Moreover, we

show that our results are very similar when using only the top exporter or top-5 exporters

from France and China.

Third, as shown by Santos Silva and Tenreyro (2006), in the presence of heteroscedastic-

ity the log-linearized gravity equation yields inconsistent estimates of E [r̃inzt|Xin, ξnzt, ζizt],

where

r̃inzt = exp[ξnzt + ζizt + β(1− σ)Xin] exp(εinzt). (18)

To see this, note that if Var(exp(εinzt)|Xin) depends on Xin, then so does E [εinzt|Xin]. A

solution to this problem is to estimate the gravity equation (18) by PPML in multiplicative

form, which also allows us to include zero trade flows in our estimation sample. Recent

computational advances in PPML estimation (e.g., Correia, Guimaraes, and Zylkin, 2019)

make it possible to include the large number of fixed effects required in our setting.

Finally, the oligopoly correction term for firm-level gravity (see equation (17)) requires

estimates of σ. In the main part of the paper, we consider values of σ equal to 4, 5, and

6—in line with standard estimates in the trade literature.21

20For example, if we used data on the exports of French firms only, we would not be able to distinguish
whether firms’ exports to a given destination are high because France and the country in question are close
to each other or because of other destination-specific factors such as a high price index or expenditure level.

21Estimates of σ are usually in the range from 4 to 6. For example, Bas, Mayer, and Thoenig (2017) find
values of σ ranging from 4.2 to 7; Gaubert and Itskhoki (2021) obtain an “imprecisely estimated” σ = 4.9;
Breinlich, Nocke, and Schutz (2020) calibrate σ = 5.2 in the median 5-digit industry. If our data exhibited
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Data. We use annual firm-level export data for French and Chinese exporters provided by

the two countries’ customs authorities for the years 2000–2010. In each dataset, we observe all

the products a firm exports and all the destinations it serves, and the value of the underlying

flows. Although both datasets record export data at the 8-digit level, we need to aggregate

this information up to the 6-digit level of the Harmonised System (HS), which is the most

disaggregate level at which the two national classifications are comparable.

To compute market shares, defined as the ratio of export value to absorption, we combine

our firm-level data with absorption data at the HS 6-digit level (or close to it) from Eurostat’s

PRODCOM database.22 The downside of using PRODCOM is that absorption data is only

available for European countries. As a result, there is insufficient variation to include, in

addition to distance, regressors such as dummies for common language or policy-related

variables (e.g., membership in a free-trade agreement and bilateral tariffs).23

After combining our data sources, we end up with information on export values, export

quantities, and market shares for 31 European destinations, 1,864 industries and around

250,000 exporters for the period 2000–2010.24,25 We source information on bilateral distance

from CEPII.26

tariff variation by destination, we could use the approach described in Appendix B to estimate σ directly from
the gravity equation (see also Head and Mayer, 2023). In the absence of such data, we show in an earlier
version of this paper (Breinlich, Fadinger, Nocke, and Schutz, 2023) how to estimate σ by adapting the
estimation procedure of Feenstra (1994) and Broda and Weinstein (2006) to firm-level data and oligopolistic
competition.

22Absorption, defined as domestic production + imports − exports, is the counterpart to Ent(z) in our
model. In principle, this information is available at the HS 6-digit level but issues such as classification changes
over time often require aggregation to higher levels. The original classification of the PRODCOM data is the
8-digit CN classification, which changes almost every year. We apply the procedure developed by Van Beveren,
Bernard, and Vandenbussche (2012) to map the CN classification to an artificial HS classification, “HS 6-
digit plus”, that is comparable over time and compatible with the 6-digit HS classification. The idea is to
aggregate both trade and PRODCOM data as little as possible and as much as required to guarantee a
one-to-one mapping between them. See their paper for an in-depth discussion of the procedure.

23The destination countries in our sample were either EU member states or had implemented free-trade
agreements (FTAs) with the EU before 2000 and therefore had no tariffs on EU imports. By contrast, China
did not have any FTAs with countries in our sample and EU external tariffs for imports from China only
had variation across industries. Thus, all variation in the FTA dummy or in tariffs would be absorbed by our
firm-industry-year fixed effects. Likewise, there is insufficient variation to include an indicator for common
language.

24The export destinations are: Austria, Belgium, Bulgaria, Croatia, Cyprus, Czechia, Denmark, Estonia,
Finland, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, the
Netherlands, Norway, Poland, Portugal, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Turkey, and
the United Kingdom.

25Possibly because of measurement issues in PRODCOM, we occasionally observe instances where ab-
sorption is smaller than a firm’s export value, resulting in market shares larger than one; in such cases, we
winsorize market shares to 0.95.

26Specifically, we use the population-weighted distance measure distw from the CEPII database.
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Descriptive Statistics. Firm-level market shares are the key determinant of our oligopoly

correction term. In Table 1, column (1) presents summary statistics on the firm-level market

shares for the French and Chinese exporters. The average market share across the approx-

imately 14 million firm-destination-industry-year combinations in our data is small (0.4%)

and the median is even smaller (around 0.01%). At the 95th percentile, the firm-level market

share is 1.12%. Clearly, the typical firm in our data does not enjoy much market power.

However, this does not imply that correcting firm-level exports for oligopoly forces will

not matter quantitatively, as estimation results could be substantially biased by a small

number of exporters with large market shares. Columns (2)–(4) focus on such firms. Column

(2) shows descriptive statistics for the top exporters (i.e., for any given 6-digit industry and

year, the French firm and the Chinese firm with the largest total export value). The average

top-exporter market share is around 6%, substantially larger than the average exporter’s

market share. Moreover, at the 95th percentile the top firm enjoys a market share of almost

30%. Columns (3) and (4) present summary statistics on the market shares and cumulative

market shares of the top-3 French and the top-3 Chinese exporters. The main takeaway

is that, in a significant minority of destination markets, the largest French and Chinese

exporters command substantial market shares.

Table 1: Summary Statistics for the Market Shares of French and Chinese Exporters

(1) (2) (3) (4)
All Top Top 3 Top 3

Exporters Exporters Exporters Exporters
(Cumulative)

Mean 0.40% 6.00% 3.88% 7.30%
5th pctile 0.00007% 0.01% 0.006% 0.03%
10th pctile 0.0004 0.03 0.02% 0.09%
Median 0.01% 1.21% 0.65% 2.05%
90th pctile 0.44% 15.72% 9.20% 19.36%
95th pctile 1.12% 28.96% 18.04% 33.44%
Observations 14,009,005 276,718 708,409 708,409

Notes: Table shows summary statistics for strictly positive market shares of French and Chinese exporters
for the years 2000–2010. The unit of observation is at the firm-destination-industry-year level.

Table 2 provides the results from regressing the logged market shares of the top-3 ex-

porters on logged distance, controlling for firm-industry-year and destination-industry-year

fixed effects. As expected, the coefficient on log-distance is strongly negative and statistically

significant, which is consistent with an oligopoly bias in standard gravity estimation.

Gravity Estimation Results. All regressions are run on the sample of the top-3 French

and top-3 Chinese exporters for each 6-digit HS industry. As a first step, we pool all industries
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Table 2: Regressing Log Market Shares on Log Distance

OLS
log dist. -0.239***

(0.013)
Observations 708,392
R2 0.02
Firm-ind.-year FE YES
Ind.-dest-year FE YES

Note: Firm-level data. Results for top 3 exporters. Standard
errors in parentheses, clustered at the destination-year level. ***
p < 0.01, ** p < 0.05, * p < 0.1.

and years and estimate equation (18) by PPML. We do so both on actual export flows and

on oligopoly-corrected export flows, as defined in equation (17).

Table 3: Firm-Level Gravity Estimates

(1) (2) (3) (4)
Method PPML w/o corr PPML w/ corr PPML w/corr PPML w/ corr

σ = 4 σ = 5 σ = 6

log dist. -0.874*** -1.492*** -1.518*** -1.528***
(0.021) (0.210) (0.220) (0.223)

Obs. 11,955,786 11,955,786 11,955,786 11,955,786
(Pseudo) R2 0.14 0.27 0.28 0.29

Firm-ind.-year FE YES YES YES YES
Ind.-dest.-year FE YES YES YES YES

Notes: Firm-level data, pooled across industries and years. Results for top-3 exporters, without and
with oligopoly correction. Standard errors in parentheses, clustered at the destination-year level.
*** p < 0.01, ** p < 0.05, * p < 0.1.

Table 3 reports the estimated coefficient on log distance, β(1− σ). Column (1) presents

the PPML estimate for the specification without oligopoly correction. The value of -0.874

almost exactly corresponds to the median estimate of -0.89 in Head and Mayer (2014)’s meta

study of 2508 gravity estimates from 159 papers (see their Table 3.4).27 Columns (2)–(4)

show the results including the oligopoly correction, for different values of σ. Regardless of the

value of σ, the absolute value of the estimated coefficient on log distance is more than 70%

larger than without oligopoly correction, ranging from 1.492 (for σ = 4) to 1.528 (for σ = 6).

27By contrast, estimating the gravity equation without oligopoly correction by OLS yields an implausibly
low estimate of -0.232, indicating a strong heteroscedasticity bias; see Table C in Online Appendix D.
Estimating the same equation without oligopoly correction by PPML, but dropping the observations with
zero trade flows, also yields an implausibly low estimate of -0.410; see Table D in Online Appendix D. Our
Monte Carlo simulations in Section 5 confirm the presence of such attenuation biases when using OLS and
PPML without zeroes; see footnote 37.
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The implied distance elasticity of trade costs, β, varies from 0.175 (for σ = 6) to 0.291 (for

σ = 4) without oligopoly correction, and from 0.306 (for σ = 6) to 0.497 (for σ = 4) with

correction.28

These empirical results confirm our theoretical insight that the trade elasticity with re-

spect to distance suffers from a substantial attenuation bias in the order of 42%. This bias

arises because firms systematically reduce their markups in markets where they face higher

variable trade costs and thus have lower market shares. As a consequence, export values

decrease by less than they would have decreased under constant markups.

We now turn to estimating gravity equations separately for each of the 78 HS 2-digit

sectors, pooling observations across 6-digit industries within a given 2-digit sector. Table 4

reports the median of the estimated distance coefficient, both with and without oligopoly

correction, and summary statistics on the distribution of the resulting oligopoly bias across

sectors. Note that, without oligopoly correction, the median estimated distance coefficient is

positive and, thus, has the wrong sign.29 By contrast, regardless of σ, the median estimated

coefficient has the correct (negative) sign and is of similar magnitude to the estimate from

the pooled regression. For example, for σ = 5, the median estimated coefficient is -1.347,

compared to -1.518 when pooling observations from all sectors. For this specification, the

median value of the absolute percentage bias is 96%; in 10% of sectors, the bias is 160% or

larger.30 Thus, in many industries, the oligopoly bias is much larger than suggested by the

estimates from the pooled regressions.

Table 4: Firm-level Gravity Estimates by 2-digit Sector

w/o corr w/ corr w/ corr w/corr
Median est coefficient σ = 4 σ = 5 σ = 6
log dist. 0.508 -0.840 -1.347 -1.225
abs. pct. bias (10th pctile) 18% 10% 17%
abs. pct. bias (median) 94% 96% 97%
abs. pct. bias (90th pctile) 234% 160% 134%

Notes: Firm-level data. Table shows summary statistics on the distribution of estimated
coefficients by 2-digit HS sector for top-3 exporters.

28As shown in Table E in Online Appendix D, very similar results obtain when using (i) only the top French
exporter and the top Chinese exporter and (ii) the top-5 French exporters and the top-5 Chinese exporters.

29Surprisingly, firm-level gravity regressions are rarely run sector by sector. The only exception we are
aware of is Bas, Mayer, and Thoenig (2017), who do not report the coefficient on distance. Thus, we are
unable to compare our estimates with analogous distance elasticities from the literature.

30The absolute percentage bias is defined as the absolute value of (β̂w/o corr − β̂w/ corr)/β̂w/ corr.
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4 Empirical Implementation: Industry-Level Gravity

We now show how to empirically implement our gravity-estimation approach at the industry

level. Our empirical specification is

log r̃onz = ξoz + ζnz + β(1− σ) log(diston) + ηonz, (19)

where

log r̃onz = log ronz + (σ̂ − 1)sonz HHIonz . (20)

This corresponds to equations (14) and (13) above, with the industry (z) dimension being

made explicit, log(diston) being our only gravity variable (for the reasons explained in Section

3), and ηonz ≡ ϕonz + εonz. We refrain from introducing a time index t because, in the

estimations below, we confine attention to data from the year 2010 for computational reasons.

As in the previous section, we now turn to a discussion of the estimation challenges.

We then briefly describe our data, run gravity regressions with and without oligopoly cor-

rection, and investigate under what circumstances ignoring oligopolistic behavior leads to

quantitatively important biases.

Estimation Challenges. The self-selection of firms into export markets again poses prob-

lems for a consistent estimation of the structural parameter β(1 − σ). If in each origin

country o there were a single firm choosing whether to enter any given destination coun-

try n, we would have the same sample selection problem as at the firm level. While

the ϕonz-term would be subsumed into the origin fixed effect, the conditional expectation

E [εonz|r̃onz > 0, ξoz, ζnz, diston] would depend on diston: the observation that a firm is export-

ing to a remote market is likely to be the result of that firm having received a favorable

εonz-shock. With multiple potential exporters, this problem remains. In addition to sample

selection, however, a potential extensive-margin bias arises whenever the set of exporters

from o varies with n, so that the ϕonz-term can no longer be subsumed into the origin fixed

effect. In particular, the conditional expectation E [ϕonz|r̃onz > 0, ξoz, ζnz, diston] is likely to

depend on diston, as a larger number of firms would presumably find it profitable to export

to nearby destinations. Summarizing, while the sample-selection bias tends to lead to an

underestimation of the effect of distance on trade, the extensive-margin bias tends to result

in an overestimation.

To alleviate both biases, we apply the two-step procedure developed by Helpman, Melitz,

and Rubinstein (2008) (henceforth, HMR) to the oligopoly-corrected trade flows. The first

step consists in estimating a Probit model of whether positive trade flows between o and n
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are observed. The regressors are origin and destination fixed effects, log diston, and bilateral

variables that are likely to affect the fixed export cost but not variable trade costs. For the

latter variables, we follow HMR and use: (i) A dummy equal to one if business startup time

is above the median in both o and n; and (ii) a dummy equal to one if business startup cost

is above the median in both o and n. The estimated conditional probability of observing

positive trade flows is denoted ρ̂onz.

The second step consists in estimating the following gravity equation:

log r̃onz = ζoz + ξnz + β(1− σ)Xonz + P (log Ẑonz) + ωλ̂onz + ηonz, (21)

where λ̂onz is the inverse Mills ratio from the first step, log Ẑonz is the ρ̂onz-quantile of the

standard normal distribution, and P (log Ẑonz) is a polynomial in log Ẑonz. The role of λ̂onz

is to correct for sample selection, while P (log Ẑonz) addresses the extensive-margin bias by

non-parametrically controlling for ϕonz.
31

Data and Descriptive Statistics. To make the estimation sample consistent with our

firm-level regressions, we construct our industry-level data by aggregating our firm-level data

(described in Section 3 above) to the 6-digit HS level. We end up with information on export

values, market shares and HHIs at the origin-destination-industry level for two exporting

countries (France and China), 31 European destinations, and 1,864 industries for the year

2010. Data on business startup times and costs are sourced from the Worldbank’s Doing

Business Database.

Table 5 presents summary statistics on exporter HHIs and aggregate market shares of

French and Chinese firms. It confirms that aggregate exports are concentrated among a small

number of firms: the mean exporter HHI (which corresponds to HHIonz in equation (20)) is

0.55; at the 90th percentile, a single firm accounts for the total market share of each country.

Moreover, the mean aggregate market share of French and Chinese firms in each destination

(sonz in equation (20)) is around 10%; at the 90th percentile, that market share reaches 27%.

Thus, in many markets, these exporters have substantial market power.

Estimation Results. Before presenting our results, it is worth pointing out that, as our

industry-level data are constructed from firm-level data, we should expect to find estimates

for the distance coefficient similar to those at the firm level. We first present results for

31A downside of the HMR method is that it does not account for potential heteroscedasticity. We have
therefore also experimented with running PPML regressions, which however address neither sample selection
nor the extensive-margin bias. The results from these regressions in combination with the Monte Carlo
simulations in Section 5 below indicate that self-selection issues are much more severe than problems arising
from potential heteroscedasticity, leading to a severe downward bias of the PPML estimates. We therefore
do not report the PPML estimates.
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Table 5: Summary Statistics for Industry-Level Market Shares and Exporter HHIs

Exporter HHI Destination Market
Share

Mean 0.53 10%
5th pctile 0.07 0.01%
10th pctile 0.12 0.06%
Median 0.48 3%
90th pctile 1 27%
95th pctile 1 48%

Notes: Industry-level data. Table shows summary statistics on the distribution of exporter ag-
gregate market share and HHI. The unit of observation is at the origin-destination-industry level.
Sample for year 2010.

the pooled regressions where we constrain the distance coefficient to be the same across

industries.

Table 6 reports OLS regression results with and without oligopoly correction, but without

controlling for selection. The distance coefficient is −1.12 without, and, depending on the

value of σ, in the range −1.23 to −1.29 with oligopoly correction. Thus, the oligopoly bias

is still at work at the industry level, albeit of a smaller magnitude (around 10%) than at

the firm level. The finding that these estimates are somewhat smaller than those at the firm

level (around −1.5; see Table 3) suggests that the sample-selection bias is stronger than the

extensive-margin bias.

Table 6: Industry-level Gravity Estimates without Controlling for Selection

(1) (2) (3) (4)
Method OLS w/o corr OLS w/ corr OLS w/ corr OLS w/corr

σ = 4 σ = 5 σ = 6
log dist. -1.128*** -1.227*** -1.260*** -1.293***

(0.195) (0.211) (0.216) (0.222)
Obs. 66,563 66,563 66,563 66,563
R2 0.314 0.293 0.285 0.278
Or.-ind. FE YES YES YES YES
Dest.-ind. FE YES YES YES YES

Notes: Industry-level data. Standard errors clustered at destination level in parentheses. *** p < 0.01, **
p < 0.05, * p < 0.1.

We now apply the HMR approach to correct for self-selection into exporting. Table 7 re-

ports results from the first-step Probit estimation of the propensity to export.32 As expected,

the dummies for high business-startup cost and long business-startup time are negatively and

32We include 2-digit sector-origin and 2-digit sector-destination fixed effects, as using 6-digit industry-origin
and industry-destination fixed effects is computationally infeasible with the Probit model. However, results
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significantly associated with the propensity to export. Unsurprisingly, distance is also nega-

tively related to export propensity, providing evidence for sample selection.

Table 7: First Step of HMR Procedure (Export Propensity)

Export > 0
log dist. -0.420*

(0.234)
high startup cost -1.340***

(0.421)
long startup time -2.102***

(0.337)
Obs. 97,332
Sector-origin FE YES
Sector-dest. FE YES

Notes: Industry-level data. HMR step-one Probit regression of propensity to export.
Standard errors clustered at destination level. *** p < 0.01, ** p < 0.05, * p < 0.1.

Table 8 reports results from the second-step HMR regression. The specifications in

columns (1)–(4) only include the inverse Mills ratio, and thus correct for sample selection

but not for the extensive-margin effect. Columns (4)–(8) show the results from the full

HMR procedure. These columns include a quadratic function of log Ẑonz
33 Throughout, the

distance coefficient in the specifications with oligopoly correction is about 8–13% larger in

magnitude than in those without. While the oligopoly-corrected estimated coefficients are

still slightly smaller than those estimated at the firm level, they are larger than those from

the OLS regression. This suggests that the sample-selection bias is slightly stronger than

the extensive-margin bias. As expected, the specifications that only include the inverse Mills

ratio yield the highest coefficient estimates, as they do not account for the extensive-margin

bias.

Finally, we run the HMR procedure as before, but now separately for each 2-digit sec-

tor. Table 9 reports summary statistics across sectors on the distribution of the estimated

coefficients and the magnitude of the oligopoly bias. While the oligopoly bias is relatively

small in the median sector (around 10–17%, depending on the value of σ), it is substantial

in a significant minority of sectors (around 47–68% at the 90th percentile). Moreover, the

absolute oligopoly bias is positively correlated with the product of the average (across origins,

destinations, and industries) Herfindahl index and the average exporting country’s aggregate

using a linear probability model indicate hardly any changes in the point estimates when adding these more
disaggregated fixed effects.

33We experimented with including higher-order terms, but this did not change the estimated distance
coefficient, and the higher-order terms were not statistically significant.
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market share; the correlation coefficient is 0.16, suggesting a larger bias in more concentrated

sectors.

Table 9: Industry-Level Gravity Estimates by 2-digit Sector

w/o corr w/ corr w/corr w/corr
Median est coefficient σ = 4 σ = 5 σ = 6
log distance -0.694 -0.819 -0.857 -0.893
abs. pct. bias (10th pctile) 3.2% 4.2% 5.2%
abs. pct. bias (median) 10.2% 13.7% 16.7%
abs. pct. bias (90th pctile) 68% 46.7% 52.3%

Notes: Industry-level data. Table shows summary statistics for the distribution of estimated
coefficients from the HMR procedure by 2-digit HS sector.

5 Monte Carlo Simulations

In this section, we perform Monte Carlo simulations to evaluate the merits of our oligopoly

correction terms. To this end, we develop and calibrate a model in which firms first self-

select into export destinations and then compete in quantities. Using the calibrated model,

we generate a Monte Carlo dataset to which we then apply our firm- and industry-level

estimation procedures. We confirm that our oligopoly correction significantly improves the

accuracy of our estimates.

Setup. The model is as described in Section 2, with λ = 1 (Cournot-Nash conduct). To

avoid general-equilibrium effects (and, in the next section, to obtain a money-metric measure

of social welfare), we assume that the representative consumer in each country has quasi-

linear preferences:

Un = q0n + En

∫
z∈[0,1]

log

 ∑
j∈Jn(z)

ajn(z)
1
σ qjn(z)

σ−1
σ

 σ
σ−1

dz,

where q0n denotes consumption of the outside good. For simplicity, we assume that parame-

ters (such as the elasticity of substitution, or various technology parameters that are described

in more detail below) do not vary across industries. Industries will still be heterogeneous due

to different realizations of random variables such as productivity draws.

Each country has a fixed labor endowment. The outside good is freely traded and pro-

duced using only labor with a constant-returns-to-scale technology that is the same in all

countries. We assume that parameters are such that it is produced in positive amount ev-

erywhere, so that its price is the same in every country. We further choose that good as the
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numeraire, which pins down the wage rate everywhere. In what follows, all costs should be

understood as being incurred in terms of labor.

We focus on an industry z ∈ [0, 1] and drop the industry index to ease notation. We now

put more structure on the distribution of cost and quality shocks, and on how firms make

entry decisions into export destinations.

Recall from Section 2 that the cost for firm i of producing and selling qin units in market

n is Cin(qin) = cinτinqin. We decompose cin log-linearly as log cin = εci + εcin, where εci and

εcin are independent draws from normal distributions with mean zero and variance υ2 and θ2,

respectively. The iceberg-type trade cost τin is set equal to 1 if firm i is based in country n

and otherwise to τon ≡ T × (diston)
β, where o denotes the country in which firm i is located,

and T and β are parameters. Finally, we set ain (the quality of product i in market n) equal

to 1 for every i and n.34

A country-o firm that wants to sell in country n ̸= o must pay a fixed cost fon ≡ F ×
φo
on × φu

on, where F is a parameter and φo
on and φu

on are i.i.d. draws from a standard log-

normal distribution. The reason for this decomposition is that we will later assume that

φo
on is observable to the econometrician whereas φu

on is not, so that φo
on can be used as an

excluded first-stage variable when applying the HMR procedure. We set foo = 0 for every

country o, so that a firm is always active in its home market.

We consider a two-stage game of complete information in which firms first simultane-

ously decide which markets to enter, and then compete in quantities in each market. Under

oligopoly, this game is likely to have multiple subgame-perfect equilibria. If there were no

fixed-cost heterogeneity, it would be possible to rank firms from highest to lowest (destination-

specific) type and construct a subgame-perfect equilibrium in which high-type firms enter

first. With fixed-cost heterogeneity (in addition to type heterogeneity), there is no such

natural ranking of firms and constructing a subgame-perfect equilibrium is a non-trivial

combinatorial problem. We therefore make the following simplifying behavioral assumption:

When making entry decisions, firms believe that they will receive monopolistic-competition

profits (given the set of firms that entered). We can then follow Spence (1976) and rank firms

according to their survival coefficients, (cinτon)
1−σ /fon, in each market n. This pins down

a natural “equilibrium” entry sequence in market n, in which firms with a higher survival

34Thus, using the notation of Section 2.2, we are setting

εcn = εai = εan = εain = ετi = ετn = ετin = 0.

The assumption that there is no destination-specific shock (εcn = εan = ετn = 0) is without loss of generality:
as such shocks would affect all firms symmetrically, they would have no impact on equilibrium market shares
and profits given CES demand. As for the firm and firm-destination quality and trade-cost shocks, we
could alternatively assume that they are drawn i.i.d. from normal distributions and obtain an observationally
equivalent model, as the resulting firm types would still be log-normally distributed.
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coefficient enter first.

Calibration. We choose parameter values to generate a Monte Carlo dataset broadly similar

to our firm-level dataset. We use the same set of countries as in the empirical implementation

and take the bilateral distance matrix diston directly from the data. Market size in country

n, En, is set equal to an amount proportional to that country’s GDP in the data. We follow

Chaney (2008) in assuming that the number of firms based in each country is proportional

to its GDP. The proportionality coefficient is chosen so that the total number of firms is

220, which is similar to the number of firms in the average industry in our dataset. The

elasticity of substitution σ is set to 5, as in our baseline empirical specification. Finally, we

set β = 0.38, which is our baseline empirical estimate of the distance coefficient for σ = 5.

We still require values for the following four parameters: F , the intercept of the fixed-

cost function; T , the intercept of the trade-cost function; υ, the standard deviation of firm

baseline productivity draws; and θ, the standard deviation of firm-destination productivity

shocks. We calibrate those parameters to match the following empirical moments (computed

using the French and Chinese firm-level data): 1. the fraction of firm-destination-industry-

year observations with zero trade flows (92%); 2. the mean (by destination-industry-year)

aggregate combined market share of French and Chinese firms (13.9%); 3. the median (by

origin-industry-year) 90/10 ratio of firm-level total exports (451); and 4. the median (by

origin-destination-industry-year) 90/10 ratio of firm-destination exports (220).

The fact that each of the moments has a natural parameter counterpart gives rise to

the following informal identification argument. Intuitively, we expect F to have a strong

and negative effect on the first moment, T to have a strong and negative effect on the

second moment, υ to have a strong and positive effect on the third moment, and θ to have

a strong and positive effect on the fourth moment. In practice, we adjust the vector of

parameters (F, T, υ, θ) to minimize the sum of the squared Davis-Haltiwanger deviations

between theoretical and empirical moments.35

We approximate the theoretical moments using Monte Carlo integration. For each pa-

rameter vector, we perform 10 Monte Carlo runs.36 For each run, we randomly draw vectors

and matrices of firm-level baseline costs (εci), firm-destination cost shocks (εcin), and fixed-cost

35The Davis-Haltiwanger deviation (Davis, Haltiwanger, and Schuh, 1996) is defined as the difference
between the theoretical and empirical moments, divided by the arithmetic average of the theoretical and
empirical moments. This residual converges to the percentage deviation when the theoretical moment tends
to the empirical moment. The advantage of using this residual for our calibration procedure is that, in
contrast to the percentage deviation, it always remains bounded and gives rise to symmetric punishments for
positive and negative deviations.

36Note that, while the number of Monte Carlo runs is small, each run generates data for about 100 firms and
33 destinations, so that there is relatively little variation in theoretical moments across runs. Increasing the
number of runs beyond 10 would only make a small difference, but would substantially increase computational
requirements.
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shocks (φo
on) and (φu

on). For each destination within a run, we then compute the equilibrium

of the entry stage and, using a variant of Nocke and Schutz (2018)’s nested fixed-point algo-

rithm, the equilibrium of the quantity-setting stage. Having done that for all ten runs, we

compute arithmetic means (for moments 1 and 2) and medians (for moments 3 and 4) to

obtain Monte Carlo approximations to our theoretical moments.

Our calibration algorithm converges to F = 3.62× 10−9 (times total world expenditures

in the industry, which we normalized to unity), T = 0.827, υ = 0.394, and θ = 1.23. We

obtain nearly perfect matches for the second, third, and fourth moments (0.140, 449, and

220, respectively, vs. 0.139, 451, and 220 in the data), and we slightly under-predict the

fraction of zeros in the firm-level export matrix (82.8% vs. 92% in the data). The resulting

sum of squared deviations is 0.011.

Data generation and results. Using the calibrated parameters, we generate the Monte

Carlo dataset. We perform 200 Monte Carlo runs. Each run features different realizations

of productivity and fixed-cost shocks, and can thus be thought of as a different industry or

a different time period. For each run, we compute the equilibrium of the entry model and

of the quantity-setting game in all markets, and we store firm-level sales and market shares,

origin, destination, firm, and run indicators, and bilateral distance and observable fixed-cost

shocks. To make the dataset comparable to the one used in our empirical applications, we

keep observations only for firms based in the countries corresponding to France and China.

We thus obtain a firm-level dataset, which we also aggregate up to construct an industry-

level dataset. On these, we run our firm- and industry-level regressions to evaluate the

performance of our oligopoly correction terms.

Table 10 reports the results from our firm-level regressions. As the OLS estimates are

strongly biased towards zero, consistent with the heteroscedasticity bias discussed in Sec-

tion 3, we focus in that table on the PPML estimates.37 The specification without oligopoly

correction (column (1)) significantly underestimates the absolute value of the distance coef-

ficient. The specification with oligopoly correction (column (2)) delivers an estimate that is

very similar to the true distance coefficient (-1.52). Interestingly, the (biased) PPML esti-

mate without oligopoly correction is very close to the empirical estimate in Table 3 (-0.851

vs. -0.874). Thus, our Monte Carlo dataset generates an oligopoly bias almost identical in

size to the one obtained in our empirical analysis.38

Table 11 reports the estimation results from industry-level regressions. As the PPML

37The OLS estimate is -0.454 without oligopoly correction and -0.472 with oligopoly correction. Simi-
larly, the PPML estimate when dropping the observations with zero trade flows is -0.717 without oligopoly
correction and -1.024 with oligopoly correction. See Table F in Online Appendix D.

38As shown in Table G in Online Appendix D, very similar results obtain when using (i) only the top
French and top Chinese exporter and (ii) the top-5 French and top-5 Chinese exporters.
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Table 10: Monte Carlo: Firm-Level Results

(1) (2)
Method PPML w/o corr PPML w/ corr

σ = 5
log dist. -0.851*** -1.403***

(0.135) (0.365)
Obs. 30,198 30,198
(Pseudo) R2 0.21 0.74
Firm-run FE YES YES
Destination-run FE YES YES

Notes: Monte Carlo dataset, firm-level data, pooled across Monte Carlo runs.
Results for top-3 exporters, without and with oligopoly correction. Standard
errors clustered at the destination level in parentheses. *** p < 0.01, **
p < 0.05, * p < 0.1. True log-distance coefficient is −1.52.

estimates are strongly biased toward zero, presumably due to selection effects, we focus

in that table on OLS and HMR estimates, with and without oligopoly correction.39 In

all specifications, our oligopoly correction improves the accuracy of the distance-coefficient

estimate. Specifications that account for self-selection (columns (3)–(6)), when combined

with our correction term, deliver estimates that are very close to the true value of -1.52.

6 Counterfactual Simulations

In this section, we turn to the welfare effects of a trade liberalization, and quantitatively

assess the importance of accounting for oligopolistic behavior. We do so by calibrating two

versions of the model of Section 5: the oligopoly (‘oli ’) version, in which λ = 1 (Cournot-

Nash conduct) and the distance coefficient is set equal to our baseline empirical estimate

with the oligopoly correction term; and the monopolistic competition (‘mc’) version in which

λ = 0 (monopolistic-competition conduct) and the distance coefficient is our baseline estimate

without the correction term. We calibrate both versions by matching the same moments in

the data, and then use them to simulate a 10% trade-cost reduction and compute the induced

welfare effects.

Setup. The setup is as described in Section 5, with the following amendments. First, at

the entry stage of the oli version, firms now correctly expect to earn oligopoly profits. As

discussed above, in the oli version such correct conjectures make it infeasible to solve for a

subgame-perfect equilibrium under fixed-cost heterogeneity. We thus, second, assume that

39The PPML estimate without oligopoly correction is -0.849. Correcting for oligopoly forces results in a
larger estimated distance coefficient of -1.04.
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Table 11: Monte Carlo: Industry-Level Results

(1) (2) (3) (4) (5) (6)
Method OLS w/o OLS w/ Heck w/o Heck w/ HMR w/o HMR w/

σ = 5 σ = 5 σ = 5
log dist. -1.272*** -1.383*** -1.282*** -1.399*** -1.298*** -1.418***

(0.0658) (0.0728) (0.0957) (0.108) (0.0990) (0.111)
inv. Mills 0.795 0.909 -3.482 -3.584

(0.523) (0.610) (2.295) (2.573)

log Ẑ -4.227 -4.386
(2.593) (2.897)

log Ẑ2 0.827 0.851
(0.544) (0.602)

Obs. 11,094 11,094 8,296 8,296 8,296 8,296
R2 0.64 0.61 0.64 0.62 0.64 0.62
Or.-run FE YES YES YES YES YES YES
Dest.-run FE YES YES YES YES YES YES

Notes: Monte Carlo dataset, industry-level data, pooled across Monte Carlo runs. Standard errors clustered
at the destination level in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1. True log-distance coefficient is
−1.52.

the fixed export cost, f > 0, does not vary across origin-destination pairs. This allows us

to rank firms from highest to lowest type and construct an equilibrium of the entry game in

which firms with a higher type enter first. Finally, we increase the number of firms based in

each country by 1 to ensure that each market is always served by at least two firms, so that

consumer surplus is always finite.40

Calibration. The set of countries, the bilateral distance matrix, each country’s market

size, the coefficient that determines the number of firms in each country, and the elasticity of

substitution are as in Section 5. The distance coefficient, β, is set to 0.38 in the oli version

and to 0.22 in the mc version, which corresponds to our baseline empirical estimates with and

without oligopoly correction (for σ = 5); see columns (3) and (1) in Table 3. The remaining

parameters (f , T , υ, and θ) are chosen to match the same moments as in the previous

section. The theoretical moments are again approximated using Monte Carlo integration

with 10 iterations.

For the oli version, the calibration algorithm converges to f = 1.36 × 10−8, T = 0.379,

υ = 0.406, and θ = 1.15. The calibrated model does a very good job of matching the 90/10

dispersion moments (218 and 456 for firm-destination and firm-level exports, respectively, vs.

220 and 451 in the data) and the mean aggregate share of French and Chinese firms (13.6%

40Under CES demand, a monopolist would set an infinite price, resulting in consumer surplus being equal
to minus infinity.
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vs. 13.9% in the data) but tends to under-predict the fraction of zeros in the firm-level export

matrix (79.8% vs. 92% in the data). This results in a sum of squared deviations of 0.0207.

The fit of the mc calibration is almost as good, with a sum of squared residuals of 0.0262.

The calibrated model continues to provide a good match for the 90/10 and aggregate-share

moments (221, 455, and 14.2%, respectively) but still under-predicts the fraction of zeros

(78.4%). The values of the productivity parameters υ and θ are close to the oli calibration

(υ = 0.257 and θ = 1.15). Productivities are slightly less dispersed in the mc calibration,

which is intuitive, as the sales distribution tends to be more compressed under oligopoly

due to incomplete passthrough. As profits tend to be lower under monopolistic competition,

the calibrated fixed cost (f = 5.67 × 10−9) is lower than in the oli calibration. Finally, the

fact that the distance coefficient β is significantly lower in the mc calibration mechanically

reduces trade costs to all destinations. This results in the intercept of the trade cost function

(T = 1.62) being higher than in the oli calibration, so as not to overpredict the exports of

French and Chinese firms.

Computing social welfare. Plugging country n’s budget constraint into the representative

consumer’s utility function, we obtain an expression for social welfare in that country (up to

an additive constant):

Wn =

∫
z∈[0,1]

En

 σ

σ − 1
log

 ∑
j∈Jn(z)

qjn(z)
σ−1
σ

− 1

+Πn(z)

 dz, (22)

where Πn(z) represents the total profits made by firms based in country n.41 To report the

values of our welfare measures in U.S. dollars, we set En equal to country n’s GDP share in

our dataset multiplied by the value added in manufacturing, added up over all 33 countries.

As in Section 5, the integral in equation (22) is approximated using Monte Carlo integration

with 200 iterations (i.e., 200 industries).

Results. We simulate the equilibrium effects of a 10% reduction in variable trade costs using

the oli and mc versions of the model. Figure 1 reports the resulting changes in social welfare

per capita.42 According to our simulations, the welfare gains from a trade liberalization are

substantially higher under oligopoly, with the average European individual experiencing a

utility gain of USD 319 in the oli version and USD 181 in the mc version. A similar picture

41We are thus assuming that firms are owned by the residents of their country of origin. The results are
very similar when assuming instead that consumers own an internationally diversified portfolio.

42To improve the figure’s readability, we have dropped two outliers, Iceland and Luxemburg, for which the
gains from trade under oligopoly significantly exceed USD 1,500 per capita. We have also dropped China,
which, in this model, benefits very little from trade liberalization, due to it being a remote market to which
very few firms find it profitable to export.
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Figure 1: Welfare Effects of a 10% Trade Cost Reduction (in USD per Capita)

Notes: Figure shows the effects of a 10% trade cost reduction on per-capita welfare (measured in USD), by
country, under oligopoly (oli) and monopolistic competition (mc).

emerges when looking at individual European countries, with most countries experiencing

gains from trade that are at least 30% higher in the oli calibration than in the mc calibration.

In large, central countries such as France or Germany, the gains from trade under oligopoly

are almost three times as high as in the mc calibration.

To better understand what drives the difference between the oli and the mc predictions,

we decompose the welfare effects of the trade liberalization into: 1. a trade-cost component

(the marginal costs of all exporters decrease by 10%, holding fixed all markups and the

set of exporters); 2. a domestic-markups component (due to increased competitive pressure,

domestic firms lower their markups); 3. a foreign-markups component (exporters, whose

market shares have increased, raise their markups); and 4. an extensive-margin component

(the set of exporters adjust).

We now report on the magnitude of these components for European social welfare per

capita; the general picture is similar when looking at individual European countries. In our

simulations, the extensive-margin component is negligible under both oligopoly and monopo-

listic competition. The domestic-markups component raises per-capita welfare by USD 67 in

the oli version, while the foreign-markups component lowers it by USD 20; both components

are of course inoperative under monopolistic competition. Finally, the trade-cost component

raises per-capita welfare by USD 272 in the oli version, and by USD 181 in the mc version.
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Thus, around two-thirds of the gap between the gains from trade under oligopoly and monop-

olistic competition can be attributed to the fact that the oli calibration results in different

trade cost parameters, with the remaining third being explained by markup adjustments.43

This highlights the importance of obtaining a reliable estimate of the distance coefficient β.

7 Conclusion

We have developed an international trade model with CES preferences and heterogeneous

firms that are granular and thus behave oligopolistically. In this model, we have derived a

gravity equation of international trade flows, both at the firm and industry level. We have

shown that the standard approach to gravity estimation suffers from an omitted variable bias

when firms behave oligopolistically. We have proposed methods to purge the observed trade

flows from market-power effects and thus obtain consistent estimates of gravity parameters.

Using French and Chinese export data and Monte Carlo simulations, we have shown that

accounting for oligopoly is quantitatively important. When estimating gravity at the firm

level, the elasticity of trade flows with respect to distance is more than 70% larger when

correcting for market power. While the magnitude of the oligopoly bias is smaller when

estimating gravity at the industry level, it is still substantial in a significant minority of

industries, namely in those in which exports tend to be highly concentrated. In a calibrated

version of our model, the welfare gains from a trade liberalization are almost twice as large

under oligopoly as under monopolistic competition. These findings reinforce the view that

market power effects matter in international trade.

Appendix

A Proofs and Derivations

A.1 Proof of Proposition 1

Proof. To complete the proof of the proposition, we need to: (a) show that the function

S is well defined, and study its monotonicity properties and its limits; (b) show that the

equilibrium condition (12) has a unique solution; (c) show that, at λ = 1, the first-order

43Our results thus contrast with those of Arkolakis, Costinot, Donaldson, and Rodriguez-Clare (2019) in
two dimensions. First, while they find that the welfare gains from trade liberalization are lower under variable
markups, we find larger gains under oligopoly than under monopolistic competition with constant markups.
Second, while they report that the (negative) foreign-markups component more than outweighs the (positive)
domestic-markups component, we obtain the opposite.
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conditions of profit maximization are sufficient for global optimality. We do so below. In the

following, we drop the destination index (n) to ease notation.

(a). As the right-hand of equation (11) is strictly increasing in si whereas the left-hand

side is non-increasing in si, this equation has at most one solution. As si tends to 0, the

left-hand side of that equation tends to 1, whereas the right-hand side tends to 0. As si

tends to ∞, the left-hand side tends to 1 or −∞, and the right-hand side tends to +∞.

The equation therefore has a unique solution, S(Ti/H, λ) ∈ (0, 1/λ), where 1/λ ≡ ∞ when

λ = 0. It is easily checked that S(·, ·) is strictly increasing in its first argument and strictly

decreasing in its second argument. By monotonicity, S(·, λ) has limits at 0 and ∞. Clearly,

those limits are equal to 0 and 1/λ, respectively.

(b). The results in the previous paragraph imply that the left-hand side of equation (12)

is strictly decreasing in H, and has limits 0 and |J |/λ as H tends to ∞ and 0, respectively.

It follows that equation (12) has a unique solution, H∗(λ).

(c). Rewriting equation (2) with λ = 1 yields:

∂πi

∂qi
=

σ − 1

σ
E

a
1
σ
i q

− 1
σ

i∑
j∈J a

1
σ
j q

σ−1
σ

j

1− a
1
σ
i q

σ−1
σ

i∑
j∈J a

1
σ
j q

σ−1
σ

j

− ciτi,

which is decreasing in qi. Hence, πi is concave in qi, and so firm i’s first-order condition is

sufficient for global optimality.

A.2 Proof of Proposition 2

Proof. To apply Taylor’s theorem, we require the value of s∗′on(0). We thus need to compute

the partial derivatives of S(·, ·) at λ = 0 and H∗′
n (0). Differentiating equation (11) with

respect to sin, λ, and tin ≡ Tin/Hn at λ = 0 yields

−sindλ =
1

σ − 1

dsin
sin

− σ

σ − 1

dtin
tin

.

It follows that44

tin∂1 logS(tin, 0) = σ and ∂2 logS(tin, 0) = −(σ − 1)S(tin, 0).

44Notation: ∂kS is the partial derivative of S with respect to its kth argument.
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Next, we differentiate equation (12) with respect to λ and Hn:

∑
j∈Jn

[
−Tjn

Hn

∂1S

(
Tjn

Hn

, λ

)
dHn

Hn

+ ∂2S

(
Tjn

Hn

, λ

)
dλ

]
= 0.

Setting λ = 0 and plugging in the values of the partial derivatives of S, we obtain:

∑
j∈Jn

[
σs∗jn(0)

dHn

Hn

+ (σ − 1)
(
s∗jn(0)

)2
dλ

]
= 0.

Making use of the definition of HHIn(0) and of the fact that market shares add up to one,

we obtain:
H∗′

n (0)

H∗
n(0)

= −σ − 1

σ
HHIn(0).

We can now compute s∗′in(0):

s∗′in(0) =
∂

∂λ
S

(
Tin

H∗
n(λ)

, λ

)∣∣∣∣
λ=0

= − Tin

H∗
n(0)

∂1S

(
Tin

H∗
n(0)

, 0

)
H∗′

n (0)

H∗
n(0)

+ ∂2S

(
Tin

H∗
n(0)

, 0

)
= (σ − 1)

[
s∗in(0)HHIn(0)− (s∗in(0))

2] .
It follows that

s∗′on(0)

s∗on(0)
= (σ − 1)

1

s∗on(0)

∑
j∈Jon

[
s∗jn(0)HHIn(0)−

(
s∗jn(0)

)2]
= (σ − 1)

[
HHIn(0)− s∗on(0)

∑
j∈Jon

(
s∗jn(0)

s∗on(0)

)2
]

= (σ − 1) [HHIn(0)− s∗on(0)HHIon(0)] .

Applying Taylor’s theorem at the first order in the neighborhood of λ = 0 yields:

log s∗on(λ) = log s∗on(0) +
d

dλ
log s∗on(λ)

∣∣∣∣
λ=0

λ+ o(λ)

= log s∗on(0) + (σ − 1) [HHIn(0)− s∗on(0)HHIon(0)]λ+ o(λ)

= log s∗on(0) + (σ − 1) [HHIn(λ)− s∗on(λ)HHIon(λ)]λ+ o(λ),

where the last line follows as HHIn(λ)−HHIn(0) and s∗on(λ)HHIon(λ)− s∗on(0)HHIon(0) are

at most first order.
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A.3 Further Theoretical Results

Further results for Section 2.2. We begin by deriving equation (9) in the main text using

the aggregative games approach presented in Section 2.3. We are interested in the partial

derivatives of log rin with respect to the bilateral variables holding fixed the characteristics

of the destination market:45

∇Xin
log rin =

∂ log Tin

∂Xin

∂

∂ log Tin

(log sin + logEn)

= −σ − 1

σ

∂ log τin
∂Xin

∂ logS(Tin, Hn)

∂ log Tin

= −σ − 1

σ
β
∂ logS(Tin, Hn)

∂ log Tin

,

where we have used the definition of Tin and S (equations (10) and (11)) to obtain the

second line and the parameterization of log τin to obtain the third line. The partial derivative

∂S(Tin, Hn)/∂Tin can be obtained by applying the implicit function theorem to equation (11):

∂ logS(Tin, Hn)

∂ log Tin

=
σ

1 + (σ − 1) S(Tin,Hn)
1−S(Tin,Hn)

.

Combining this with the above expression and simplifying, we obtain equation (9) in the

main text.

Further results for Section 2.3. Finally, we derive equation (15) in the main text. We are

interested in the partial derivatives of log ron with respect to the bilateral variables holding

fixed the characteristics of the destination market:

∇Xon log ron =
1

son

∑
j∈Jon

sjn
∂ log sjn
∂Xon

= β(1− σ)
1

son

∑
j∈Jon

sjn
1

1 + (σ − 1)
sjn

1−sjn

≃ β(1− σ)
1

son

∑
j∈Jon

sjn (1− (σ − 1)sjn)

= β(1− σ) (1− (σ − 1)son HHIon) ,

where we have used equation (9) to obtain the second line and a Taylor approximation around

sjn ≃ 0 to obtain the third line. Equation (15) follows.

45If Xin is multidimensional, ∂/∂Xin should be understood as ∇Xin .

34



B Estimating σ Using Tariff Data

In this section, we show how the elasticity of substitution, σ, can be jointly estimated with

the coefficients on bilateral variables, β, if the data feature sufficient variation in tariffs.

Following the same steps as in Section 2.2, we obtain the firm-level gravity equation

log rin = ξn + ζi +Xinβ(1− σ) + (1− σ) log(1 + tin) + (σ − 1) log (1− µin) + εin, (23)

where tin is the ad-valorem tariff paid by firm i in destination n.

Using the formula for the equilibrium markup (equation (4)), absorbing the constant term

(σ − 1) log((σ − 1)/σ) into the fixed effects, and introducing the dummy variables

Ďj
in =

1 if i = j

0 otherwise
and D̃m

in =

1 if n = m

0 otherwise
,

we can rewrite equation (23) as

log rin =
∑
m

ξmD̃
m
in +

∑
j

ζjĎ
j
in +Xinβ(1− σ) + (1− σ) log(1 + tin) + (σ − 1) log(1− sin) + εin

= D̃inξ + Ďinζ +Xinβ(1− σ) + (1− σ) log(1 + tin) + (σ − 1) log(1− sin) + εin,

where ξ and ζ are the column vectors of destination and firm fixed effects, respectively, and

D̃in and Ďin are row vectors of destination and firm dummy variables.

Using the above gravity equation to eliminate εin from the orthogonality conditions

E(D̃inεin) = 0, E(Ďinεin) = 0, E(Xinεin) = 0, and E(log(1 + tin)εin) = 0, we obtain the

moment conditions

E
([

log rin − D̃inξ − Ďinζ −Xinβ(1− σ)

−(1− σ) log(1 + tin)− (σ − 1) log(1− sin)]
(
D̃in, Ďin, Xin, log(1 + tin)

))
= 0.

Using these moment conditions, the parameters of interest, β and σ, can be consistently

estimated by GMM.46

46As in the main text, potential selection issues can be mitigated by focusing on top exporters. To
address concerns of heteroscedasticity, the GMM objective function can be constructed by writing the moment
conditions in levels rather than logs, mirroring the PPML estimator in the main text.
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C Price Competition

C.1 Theoretical Results

Under price competition, the profit of firm i when selling in destination n is:

πin = (pin − τincin)ainp
−σ
in P σ−1

n αnEn,

where we have dropped the industry index z for ease of notation.

The degree of strategic interactions between firms continues to be governed by the conduct

parameter λ ∈ [0, 1]: When firm i increases its price by an infinitesimal amount, it perceives

the induced effect on Pn to be equal to λ∂Pn/∂pin. It is still the case that monopolistic

competition arises when λ = 0, whereas Bertrand competition arises when λ = 1. The

first-order condition of profit maximization of firm i in destination n is given by

0 =
∂πin

∂pin
= ainp

−σ
in P σ−1

n αnEn + (pin − τincin)

[
− σ

pin
+

σ − 1

Pn

λ
∂Pn

∂pin

]
αnEnainp

−σ
in P σ−1

n

= qin

(
1− pin − τincin

pin
[σ − λ(σ − 1)sin]

)
, (1)

∗University of Surrey, CEP and CEPR. Email: h.breinlich@surrey.ac.uk.
†Department of Economics, University of Vienna, CEPR and MaCCI. Email: har-

ald.fadinger@univie.ac.at.
‡Department of Economics and MaCCI, University of Mannheim. Also affiliated with CEPR. Email:

volker.nocke@gmail.com.
§Department of Economics and MaCCI, University of Mannheim. Also affiliated with CEPR. Email:

schutz@uni-mannheim.de.

1



where

sin ≡ ainp
1−σ
in∑

j∈J ajnp
1−σ
jn

(2)

continues to be the market share of firm i in destination n.

Equation (1) pins down firm i’s optimal markup under price competition:

µin =
1

σ − λ (σ − 1) sin
,

where µin = (pin−τincin)/pin is firm i’s Lerner index. Apart from this change in the expression

for the firm’s optimal markup, all other firm-level results go through as before.

We now turn our attention to the industry-level results. As in Section 2.3, we begin

by employing an aggregative games approach to analyze the equilibrium in a given market,

dropping the market subscript n to ease notation. The market-level aggregator H is now

defined as

H ≡ P 1−σ =
∑
j∈J

ajp
1−σ
j

and firm i’s type as Ti ≡ ai(ciτi)
1−σ.

Plugging these definitions into equation (1), making use of equation (2), and rearranging,

we obtain: (
1− s

1
σ−1

i

(
H

Ti

) 1
σ−1

)
(σ − λ(σ − 1)si) = 1. (3)

Note that the left-hand side of equation (3) is strictly decreasing in si on the interval

(0,min {σ/(λ(σ − 1)), Ti/H}) and tends to σ and 0 as si tends to the lower and upper end-

points of that interval, respectively. Equation (3) therefore has a unique solution in the above

interval, denoted S(ti, λ) with ti ≡ Ti/H. (Solutions outside that interval necessarily give

rise to strictly negative markups and are thus suboptimal.)

It is easily checked that S is strictly increasing in its first argument, strictly decreasing

in its second argument, and tends to 0 and 1/λ as ti tends to 0 and ∞, respectively.

As before, the equilibrium condition is that market shares must add up to one:

∑
j∈J

S

(
Ti

H
, λ

)
= 1. (4)

The properties of the function S, described above, imply that this equation has a unique

solution, H∗(λ).

To summarize:

2



Proposition A. In each destination market, and for any conduct parameter λ, there exists

a unique equilibrium in prices. The equilibrium aggregator level H∗(λ) is the unique solution

to equation (4). Each firm i’s equilibrium market share is s∗i (λ) = S(Ti/H
∗(λ), λ), where

S(Ti/H
∗(λ), λ) is the unique solution to equation (3).

Proof. All that is left to do is check that first-order conditions are sufficient for optimality

when λ = 1. From equation (1), we have:

∂πi

∂pi
= qi

[
1− pi − τici

pi

(
σ − λ(σ − 1)

aip
1−σ
i∑

j ajp
1−σ
j

)]
.

As the term inside square brackets is strictly decreasing in pi, it follows that, if firm i’s first-

order condition holds at p̂i, then ∂πi/∂pi is strictly positive whenever pi < p̂i and strictly

negative whenever pi > p̂i. Hence, first-order conditions are sufficient for optimality.

Having characterized the equilibrium in a given destination, we now adapt the first-order

approach to industry-level gravity to the case of price competition. As in Section 2.3, let

E ⊊ J denote the subset of exporters in country e that sell in the destination market n. The

combined market share of those exporters in market n is given by

s∗e(λ) ≡
∑
i∈E

s∗i (λ).

As before, we approximate s∗e(1) at the first order. The definitions of HHI and HHIe are as

in Section 2.3.

We obtain:

Proposition B. At the first order, in the neighborhood of λ = 0, the logged joint market

share in destination n of the firms from export country e is given by

log s∗e(λ) = log s∗e(0) +
σ − 1

σ
[HHI(λ)− s∗e(λ)HHIe(λ)]λ+ o(λ).

Proof. The proof follows the same developments as the proof of Proposition 2. We begin by

computing the partial derivatives of S at λ = 0. It is useful to rewrite first equation (3) as

si = ti

(
1− 1

σ − λ(σ − 1)si

)σ−1

. (5)
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Taking the logarithm and totally differentiating the equation at λ = 0 yields:

dsi
si

=
dti
ti

− σ − 1

σ
sidλ.

The partial derivatives of S are thus given by

ti∂1 logS(ti, 0) = 1 and ∂2 logS(ti, 0) = −σ − 1

σ
S(ti, 0).

To obtain H∗′(0), we differentiate equation (4):

∑
j∈J

[
−Tj

H
∂1S

(
Tj

H
, λ

)
dH

H
+ ∂2S

(
Tj

H
, λ

)
dλ

]
= 0.

Setting λ = 0, plugging in the values of the partial derivatives of S, and using the fact that

market shares add up to unity, we obtain:

H∗′(0)

H∗(0)
= −σ − 1

σ
HHI(0).

Next, we compute s∗′i (0):

s∗′i (0) = − Ti

H∗(0)
∂1S

(
Ti

H∗(0)
, 0

)
H∗′(0)

H∗(0)
+ ∂2S

(
Ti

H∗(0)
, 0

)
=

σ − 1

σ

[
s∗i (0)HHI(0)− (s∗i (0))

2] .
Adding up and dividing by s∗e(0) yields:

s∗′e (0) =
σ − 1

σ
[HHI(0)− s∗e(0)HHIe(0)] .

As in the proof of Proposition 2, we can then apply Taylor’s theorem to obtain the result.

Proposition B motivates the following approximation:

log s∗e(1) ≃ log s∗e(0) +
σ − 1

σ
[HHI(1)− s∗e(1)HHIe(1)] .

As in Section 2.3, this approximation can then be used to derive the industry-level gravity

regression

log r̃en = ζe + ξn + β(1− σ)Xen + ηen

4



where

log r̃en ≡ log ren +
σ − 1

σ
senHHIen

is the value of export flows from e to n, purged from oligopolistic market power effects.

Note that the correction term under price competition is equal to the one under quantity

competition divided by σ. We should therefore expect to find a smaller oligopoly bias than

in the main part of the paper.

C.2 Empirical Results

Table A shows results for the pooled firm-level regressions. In all specifications, the point

estimates on the distance coefficient are much larger in absolute magnitude when correcting

for oligopoly bias. The absolute value of the distance coefficient is slightly smaller than with

Cournot competition.

Table B shows results for the pooled industry-level regressions. Again, the distance coef-

ficient becomes larger in absolute magnitude when including the oligopoly correction term.

Like in the case of Cournot competition, the absolute differences in coefficient magnitudes

between the estimates with and without correction are smaller than with the firm-level esti-

mates.

Table A: Firm-Level Gravity Estimates – Bertrand competition

(1) (2) (3) (4)
Method PPML w/o corr PPML w/ corr PPML w/corr PPML w/ corr

σ = 4 σ = 5 σ = 6

log dist. -0.874*** -1.307*** -1.418*** -1.473***
(0.021) (0.156) (0.190) (0.207)

Obs. 11,955,786 11,955,786 11,955,786 11,955,786
(Pseudo) R2 0.14 0.23 0.26 0.27

Firm-ind.-year FE YES YES YES YES
Ind.-dest.-year FE YES YES YES YES

Notes: Firm-level data, pooled across industries and years. Results for top 3 exporters. Oligopoly
correction with σ ∈ {4, 5, 6}. Standard errors in parentheses, clustered at the destination-year level.
*** p < 0.01, ** p < 0.05, * p < 0.1.
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D Supplementary Tables

Table C: Firm-Level Gravity Estimates. OLS

(1) (2) (3) (4)
Method OLS w/o corr OLS w/ corr OLS w/corr OLS w/ corr

σ = 4 σ = 5 σ = 6

log dist. -0.232*** -0.264*** -0.275*** -0.285***
(0.014) (0.015) (0.015) (0.015)

Obs. 708,392 708,392 708,392 708,392
R2 0.06 0.05 0.05 0.04

Firm-ind.-year FE YES YES YES YES
Ind.-dest.-year FE YES YES YES YES

Notes: Firm-level data, pooled across industries and years. Results for top-3 exporters,
without and with oligopoly correction. Standard errors in parentheses, clustered at the
destination-year level. *** p < 0.01, ** p < 0.05, * p < 0.1.

Table D: Firm-Level Gravity Estimates. PPML Without Zeroes

(1) (2) (3) (4)
Method PPML w/o corr PPML w/ corr PPML w/corr PPML w/ corr

σ = 4 σ = 5 σ = 6

log dist. -0.410*** -1.219*** -1.261*** -1.279***
(0.017) (0.334) (0.352) (0.360)

Obs. 708,392 708,392 708,392 708,392
(Pseudo) R2 0.09 0.32 0.33 0.33

Firm-ind.-year FE YES YES YES YES
Ind.-dest.-year FE YES YES YES YES

Notes: Firm-level data, pooled across industries and years, and dropping observations with zero
trade flows. Results for top-3 exporters, without and with oligopoly correction. Standard errors in
parentheses, clustered at the destination-year level. *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table E: Firm-level Gravity Estimates. Robustness on Sample of Firms

(1) (2) (3) (4) (5) (6)
Sample Top 1 Top 1 Top 3 Top 3 Top 5 Top 5
Method PPML w/o PPML w/ PPML w/o PPML w/ PPML w/o PPML w/

σ = 5 σ = 5 σ = 5
log dist. -0.978*** -1.257*** -0.874*** -1.518*** -0.793*** -1.532***

(0.018) (0.083) (0.021) (0.220) (0.021) (0.232)
Obs. 3,690,099 3,690,099 11,955,786 11,955,786 20,265,693 20,265,693
(Pseudo) R2 0.14 0.25 0.14 0.28 0.14 0.29
Firm-ind.-year FE YES YES YES YES YES YES
Dest.-ind.-year FE YES YES YES YES YES YES

Notes: Firm-level data, pooled across industries. Results for top 1 exporters (columns 1–2), top 3 exporters
(columns 3–4), top 5 exporters (columns 5–6). Standard errors in parentheses, clustered at the destination-
year level. *** p < 0.01, ** p < 0.05, * p < 0.1.

Table F: Monte Carlo: Firm-Level Gravity Estimates. OLS and PPML With-
out Zeroes

(1) (2) (3) (4)
Method OLS w/o corr OLS w/ corr PPML w/o corr PPML w/ corr

σ = 5 σ = 5

log dist. -0.454** -0.472** -0.717*** -1.024***
(0.202) (0.214) (0.201) (0.362)

Obs. 9,529 9,529 9,529 9,529
(Pseudo) R2 0.48 0.47 0.21 0.65

Firm-run FE YES YES YES YES
Dest.-run FE YES YES YES YES

Notes: Monte Carlo dataset, pooled across Monte Carlo runs. Results for top-3 exporters,
without and with oligopoly correction. PPML results when dropping observations with zero
trade flows. Standard errors in parentheses, clustered at the destination level. *** p < 0.01,
** p < 0.05, * p < 0.1.

Table G: Monte Carlo: Firm-level Results. Robustness on Sample of Firms

(1) (2) (3) (4) (5) (6)
Sample Top 1 Top 1 Top 3 Top 3 Top 5 Top 5
Method PPML w/o PPML w/ PPML w/o PPML w/ PPML w/o PPML w/

σ = 5 σ = 5 σ = 5
log dist. -1.093*** -2.480*** -0.851*** -1.403*** -0.805*** -1.421***

(0.267) (0.703) (0.135) (0.365) (0.104) (0.310)
Obs. 6,340 6,340 30,198 30,198 55,680 55,680
(Pseudo) R2 0.28 0.80 0.21 0.74 0.19 0.71
Firm-run FE YES YES YES YES YES YES
Dest.-run FE YES YES YES YES YES YES

Notes: Monte Carlo dataset, firm-level data, pooled across Monte Carlo runs. Results for top 1 exporters
(columns 1–2), top 3 exporters (columns 3–4), top 5 exporters (columns 5–6). Standard errors in parentheses,
clustered at the destination level. *** p < 0.01, ** p < 0.05, * p < 0.1.
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