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Abstract

We study welfare distortions in a multiproduct-firm pricing game with constant elas-

ticity of substitution (CES) or multinomial logit (MNL) demand. Using approximations

both around small market shares and around monopolistic competition conduct, we

identify sufficient statistics to gauge the extent of inefficiencies caused by oligopolistic

market power. We find that, at a low order, the oligopoly distortions are proportional

to the Herfindahl index of industry concentration. At a higher order, distortions also

depend on the cubic Hannah-Kay concentration index. Additionally, we show that the

welfare loss from resource misallocation is approximately proportional to the difference

between the cubic Hannah-Kay index and the square of the Herfindahl index.
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1 Introduction

There is a growing empirical literature that reports worrying trends in the evolution of mar-

ket power and industry concentration. For instance, in an influential paper, De Loecker,

Eeckhout, and Unger (2020) estimate that the sales-weighted average markups in the U.S.

rose from 21% in 1980 to 61% in 2016.1 De Loecker and Eeckhout (2018) report comparable

figures for the evolution of markups in the global economy. In a similar vein, Barkai (2020)

∗We gratefully acknowledge support from the German Research Foundation (DFG) through CRC TR 224
(Project B03).
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1Consistent with the findings on rising markups, the labor share of GDP has declined in the U.S. and
other countries since the early 1980s (see, e.g., Autor, Dorn, Katz, Patterson, and Reenen, 2020).
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reports that the average four-firm concentration ratio in U.S. NAICS 6-digit industries in-

creased by around 5 percentage points between 1997 and 2012. Koltay, Lorincz, and Valletti

(2023) find that the share of high-concentration industries (defined as ISIC four-digit indus-

tries where the four-firm concentration ratio exceeds 50%) grew by more than 60% from 1998

to 2018.2

The aim of this paper is to identify sufficient statistics to gauge the extent of welfare

distortions caused by oligopolistic market power. These sufficient statistics take the form of

(combinations of) concentration indices, notably the Herfindahl index and the cubic Hannah-

Kay index (see Hannah and Kay, 1977). To this end, we consider a multiproduct-firm

oligopoly model with constant elasticity of substitution (CES) and multinomial logit (MNL)

demand featuring arbitrary firm and product heterogeneity. As shown in Nocke and Schutz

(2018, forthcoming), this framework has several appealing properties. First, the pricing

game is fully aggregative, in that each firm’s profit and incentives depend on rivals’ behavior

solely through a uni-dimensional sufficient statistic summarizing the intensity of competition.

Second, that statistic is also a sufficient statistic for consumer surplus. Third, the type

aggregation property holds, in that each firm’s product portfolio can be summarized by a

uni-dimensional sufficient statistic—the firm’s type.

Given that products are horizontally differentiated, we take the outcome under monopo-

listic competition, where firms do not internalize the effects of their actions on the industry

aggregator, as the relevant competitive benchmark. The reason is that, under monopolistic

competition, the equilibrium markups are identical across products and invariant to which

firm offers which products. To gauge the extent of welfare distortions due to oligopolistic

market power, we thus compare our welfare measures in oligopoly to their values under mo-

nopolistic competition. Our results are based on Taylor approximations. Our first set of re-

sults relies on approximations around small market shares, and the second on approximations

around monopolistic competition conduct. We find that, with both sets of approximations,

the oligopoly distortions to consumer surplus and aggregate surplus are proportional to the

Herfindahl index at a low order. At a higher order, the oligopoly distortions also depend on

the cubic Hannah-Kay concentration index.

Next, we propose a decomposition of the oligopoly distortions in the spirit of the macroeco-

nomics literature on misallocation (Restuccia and Rogerson, 2008; Hsieh and Klenow, 2009).

The decomposition features two terms. The first term, which is driven by the overall level

of the average markup, measures the welfare loss generated by the fact that an oligopolistic

industry does not utilize the efficient amount of resources for production. The second term,

which is driven by markup heterogeneity, captures the extent to which the resources used in

the industry are not efficiently allocated to the production of the various products. It thus

corresponds to the welfare loss from within-industry misallocation.

Beginning with the first term of the decomposition, we show that oligopolistic market

power results in too few resources being utilized under CES demand. For the case of MNL

2For critical takes on this literature, see Miller (2025) and Shapiro and Yurukoglu (forthcoming).
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demand, however, we show that both excessive and insufficient resource employment can

arise. Turning to the second term, we show that for any well-behaved quasi-linear demand

system, within-industry resource allocation is efficient if and only if percentage markups are

equalized across products. We then approximate the aggregate surplus loss from within-

industry misallocation under the assumption that firms have small market shares or in the

neighborhood of monopolistic competition conduct. For reasons that are explained in Sec-

tion 4.2, we focus on the case of CES demand. With both sets of approximations, we find that

the misallocation term is negligible at a low order, implying that the oligopoly distortion is

entirely driven by the industry under-utilizing resources. At a higher order, the misallocation

is proportional to the difference between the cubic Hannah-Kay concentration index and the

square of the Herfindahl index. As that difference is neither concave nor convex in the vector

of market shares, it is generally not true that greater industry concentration results in larger

within-industry misallocation.

Related literature. There is a small literature studying the relationship between industry

concentration and market performance in the special case of the homogeneous-goods Cournot

model. Cowling andWaterson (1976) show that the Herfindahl index provides a measure of an

industry’s average markup and profitability (see Belleflamme and Peitz, 2010, for a textbook

treatment). Dansby and Willig (1979) show that the industry performance gradient index,

which measures the rate of potential improvement in aggregate surplus from a small variation

in the output vector, is proportional to the square root of the Herfindahl index. Assuming

that demand has constant curvature, Corchon (2008) shows that the percentage deadweight

loss in Cournot oligopoly depends solely on the Herfindahl index, demand curvature, and

the market share of the top firm (see also Ritz, 2014).3 Spiegel (2021) shows that the ratio

of producer surplus to consumer surplus in Cournot oligopoly is equal to the product of the

Herfindahl index and the elasticity of consumer suplus with respect to aggregate output.

We are aware of only few results linking the Herfindahl index to industry performance

measures in models of differentiated-products industries. In an oligopoly model with CES

preferences and price or quantity competition, Grassi (2017) relates the industry average

markup to the Herfindahl index and higher-order Hannah-Kay indices. In Feenstra and We-

instein (2017)’s model with translog preferences, the representative consumer’s indirect utility

depends on the Herfindahl index both directly, due to translog preferences, and indirectly,

due to endogenous markups. In earlier work, Nocke and Schutz (2023, forthcoming), we use

the same approximation techniques as in the present paper to show that the welfare effects of

a merger without synergies are approximately proportional to the naively-computed, merger-

induced variation in the Herfindahl index.4 In a similar spirit, Nocke and Whinston (2022)

show both theoretically and empirically that the level of synergies required for a merger not

3Demand has constant curvature if and only if it is ρ-linear, i.e., inverse demand takes the form P (Q) =
a− bQδ (Bulow and Pfleiderer, 1983).

4Breinlich, Fadinger, Nocke, and Schutz (2020) use an approximation around monopolistic competition
conduct to derive an industry-level gravity equation for trade flows in oligopoly.
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to harm consumers is positively related to the induced change in the Herfindahl index, but

not to its level. To the best of our knowledge, our paper is the first to link explicitly the

oligopoly distortions to consumer surplus and aggregate surplus to concentration indices,

including the Herfindahl index.

Our paper is also related to the macroeconomics literature on misallocation, pioneered

by Restuccia and Rogerson (2008) and Hsieh and Klenow (2009), and surveyed by Restuccia

and Rogerson (2017). That literature is concerned with welfare or aggregate productivity

losses due to frictions at the firm or plant level that imply that the marginal revenue product

of inputs is not equalized across firms, both within and across industries. A source of friction

that has recently received much attention is markup heterogeneity across firms. In a macroe-

conomic model with flexible input-output linkages, Baqaee and Farhi (2020) take markups

as exogenous and approximate the aggregate productivity loss in the neighborhood of small

markups. In a quantitative macroeconomic model, in which markups vary due to either mo-

nopolistic competition with Kimball (1995) preferences or single-product-firm oligopoly with

(nested) CES preferences, Edmond, Midrigan, and Xu (2023) evaluate the welfare loss from

markups. They quantitatively break down the loss into three components: one arising from

the level of the average markup, one from the misallocation of factors of production due to

markup heterogeneity, and one from inefficient entry. In a Cournot model with differentiated

products and linear demand, Pellegrino (forthcoming) estimates the deadweight loss from

oligopolistic competition and the component stemming from misallocation. We contribute

to this literature by providing formulas that link both the overall welfare loss from markups

and the induced misallocation to concentration measures.

Road map. The remainder of the paper is organized as follows. In Section 2, we describe

the multiproduct-firm oligopoly model and characterize its equilibrium using aggregative

games techniques. In Section 3, we approximate the oligopoly distortions to consumer and

aggregate surplus. In Section 4, we relate the within-industry misallocation to concentration

indices. We conclude in Section 5.

2 The Multiproduct-Firm Oligopoly Framework

In this section, we present the multiproduct-firm pricing game with CES and MNL demand

of Nocke and Schutz (forthcoming). We describe the model in Section 2.1 and characterize

equilibrium behavior using aggregative games techniques in Section 2.2.

2.1 The Model

Consider an industry with a setN of horizontally differentiated products. Demand is of either

the MNL type or the CES type. The representative consumer’s quasi-linear preferences are
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described by the indirect utility function

y + V (p) = y + V0 log

[
H0 +

∑
j∈N

hj(pj)

]
, (1)

where y > 0 is the consumer’s income, V0 > 0 is a market size parameter, and H0 ≥ 0

is a baseline-utility parameter. In the case of MNL demand, the functions hj take the

exponential form hj(pj) = exp
(aj−pj

λ

)
; in the case of CES demand, they are power functions,

hj(pj) = ajp
1−σ
j . The parameter aj > 0 represents the quality of product j; λ > 0 and σ > 1

measure the substitutability of products. Defining the industry aggregator as

H(p) ≡ H0 +
∑
j∈N

hj(pj),

indirect utility can be rewritten as V (p) = V0 logH(p).

Applying Roy’s identity, we obtain the demand for product i:

Di(p) = V0
−h′

i(pi)

H(p)
. (2)

This demand system can also be derived from a discrete/continuous choice model, in which

each consumer first chooses a product (or the outside option), and then decides how many

units of that product to consume (see Anderson, de Palma, and Thisse, 1992; Nocke and

Schutz, 2018). Under this micro-foundation, any given consumer ends up choosing product i

with probability hi/H; conditional on having chosen product i, a consumer purchases −h′
i/hi

units of that product. Moreover, V0 is the total mass of consumers, and logH0 is the mean

utility of the outside option. In the remainder of the paper, we normalize V0 to 1.

The set of firms, F , is a partition of N . That is, each product is sold by one and only

one firm. The profit of firm f ∈ F is given by

Πf (p) =
∑
j∈f

(pj − cj)
−h′

j(pj)

H(p)
, (3)

where cj > 0 denotes product j’s constant marginal cost of production, incurred in units of

the Hicksian composite commodity. Firms compete by simultaneously setting prices. The

solution concept is Nash equilibrium.

The equilibrium characterization below and our results on concentration indices as mea-

sures of oligopoly distortions rely on firm-level market shares. We define the market share of

firm f as

sf =
∑
j∈f

hj

H
.

In the discrete/continuous choice micro-foundation, this corresponds to the probability that
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any given consumer chooses one of firm f ’s products. Moreover, sf corresponds to firm f ’s

output share under MNL demand and to firm f ’s revenue share under CES demand. In both

cases, the firms’ market shares add up to 1−H0/H, where H0/H is the market share of the

outside option.

2.2 Equilibrium Behavior

In this subsection, we summarize the key properties of the equilibrium. We refer the reader

to Nocke and Schutz (2018, forthcoming) for details and proofs.

The equilibrium exists and is unique. Each firm f ’s pricing behavior can be summarized

by a uni-dimensional sufficient statistic, µf > 1, referred to as firm f ’s ι-markup. Specifically,

given the ι-markup µf , firm f prices each of its products i ∈ f according to the following

inverse elasticity rule:
pi − ci
pi

=
µf

pih′′
i (pi)/(−h′

i(pi))
.

Under MNL demand, the elasticity term pih
′′
i /(−h′

i) is equal to pi/λ, and so firm f charges

the same absolute markup, pi − ci = λµf , on every product in its portfolio. Under CES

demand, the elasticity term is constant and equal to σ, implying that firm f sets the same

Lerner index, (pi − ci)/pi = µf/σ, on every product i ∈ f . With such a common ι-markup,

the profit of firm f is simply given by

Πf = αµfsf . (4)

The equilibrium ι-markup and market share of firm f satisfy the following condition:

µf =
1

1− αsf
, (5)

where α ≡ 1 under MNL demand and α ≡ (σ − 1)/σ under CES demand. Equation (5) can

be understood as an upward-sloping firm-level supply relation: a firm that has a high market

share has significant market power, and therefore sets a high ι-markup.

In equilibrium, µf and sf must also be consistent with the following firm-level demand

relation:

sf =

{
T f

H

(
1− (1− α)µf

) α
1−α under CES demand,

T f

H
e−µf

under MNL demand,
(6)

where T f ≡
∑

j∈f hj(cj) is firm f ’s type. According to equation (6), firm f ’s market share is a

decreasing function of firm f ’s markup, with T f/H acting as a demand shifter. The sufficient

statistic T f summarizes all the relevant information about firm f ’s product portfolio. As it

is higher if firm f sells more products, with lower marginal costs or with higher qualities, it

can be viewed as a measure of how good the firm is.

The system of equations (5)–(6) has a unique solution in (µf , sf ), which pins down

m(T f/H) and S(T f/H), firm f ’s markup fitting-in function and market-share fitting-in func-
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tion, respectively. Both functions are strictly increasing: a firm that has a higher type or

operates in a less competitive environment (lower H) sets a higher ι-markup and receives a

larger market share. It can also be shown that firm f ’s equilibrium profit satisfies Πf = µf−1.

We thus obtain the profit fitting-in function of firm f :

π

(
T f

H

)
≡ m

(
T f

H

)
− 1 =

αS(H/T f )

1− αS(H/T f )
, (7)

where we have used equation (5) to obtain the second equality.

Finally, the equilibrium level of the aggregator, H∗, is uniquely pinned down by the

condition that market shares add up to one:

H0

H
+
∑
f∈F

S

(
T f

H

)
= 1. (8)

Summing up: the aggregator level, H∗, is pinned down by equilibrium condition (8).

Firm-level equilibrium behavior is then determined by the corresponding fitting-in functions:

in equilibrium, firm f sets an ι-markup of µf∗ = m(T f/H∗), commands a market share of

sf∗ = S(T f/H∗), and earns a profit of Πf∗ = π(T f/H∗). Equilibrium prices can be backed

out from the inverse elasticity rule: for every i ∈ f , p∗i is equal to ci + λµf∗ under MNL

demand, and to ciσ/(σ − µf∗) under CES demand.

Conduct parameter. For some of our approximation results, it is useful to adopt a flexible

approach to industry conduct. Specifically, suppose that, when firm f increases the price

of its product i ∈ f by dpi, it believes that the impact on the aggregator is θ(∂H/∂pi)dpi,

where θ ∈ [0, 1] is the industry conduct parameter.5 The baseline model studied above, in

which firms have correct conjectures, corresponds to the case of θ = 1. If instead θ < 1, then

firms do not fully internalize the impact of their behavior on the industry aggregator.

For a given conduct parameter, θ, the analysis proceeds as above. The firm-level supply

relation (equation (5)) must be adapted as follows:

µf =
1

1− αθsf
. (9)

The markup and market-share fitting-in functions, m(T f/H, θ) and S(T f/H, θ), jointly solve

equations (6) and (9). The expression for the profit fitting-in function becomes:

π

(
T f

H
, θ

)
≡ m(T f/H, θ)− 1

θ
=

αS(H/T f , θ)

1− αθS(H/T f , θ)
.

The equilibrium aggregator level, H∗(θ), continues to be pinned down by market shares

5Our treatment of industry conduct under product differentiation is the natural counterpart to the classic
approach for homogeneous-products industries, as surveyed in Bresnahan (1989).
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having to add up to one:
H0

H
+
∑
f∈F

S

(
T f

H
, θ

)
= 1. (10)

The analysis in the remainder of the paper should be understood as being carried out under

the assumption that θ = 1, unless explicitly stated otherwise.

Monopolistic competition. The special case of monopolistic competition conduct arises

when θ = 0, i.e., when firms believe that they have no impact on the industry aggregator.

From equation (9), we see that each firm sets its ι-markup to the lowest possible value,

µf = 1, regardless of the firm’s market share. We thus refer to µf = 1 as the monopolistic

competition ι-markup.

Under fully fledged oligopoly conduct (θ = 1), the outcome in which each firm sets the

monopolistic competition ι-markup arises in the limit as firms’ market shares tend to zero,

i.e., when firms become atomless. Such a limiting outcome can be obtained by infinitely

replicating the population of firms, or by making the mean utility of the outside option,

logH0, go to infinity.

Nested demand systems. The CES and MNL demand systems have the independence

of irrelevant alternatives (IIA) property, as the ratio of demands for any two products is

independent of the price of any third product. This restriction on substitution patterns can

be relaxed by considering nested CES and nested MNL demand systems, in which the set

of products is partitioned into a set of nests, with product being closer substitutes within

nests than across nests. In Nocke and Schutz (forthcoming), we show that, provided each

firm owns one or several entire nests of products, the pricing game remains aggregative with

consumer surplus being equal to the log of the aggregator, and the common ι-markup and

type aggregation properties continue to hold. Moreover, fitting-in functions are still defined

by equations (5), (6), and (7), and the aggregator remains being pinned down by equation (8).

As the analysis in the present paper relies only on these properties of the pricing game, this

implies that all the results stated below continue to hold under nested CES or MNL demand,

provided each firm owns one or several entire nests of products.

3 Concentration Indices and Oligopoly Distortions

In this section, we relate the loss in consumer surplus and aggregate surplus from oligopolistic

market power to concentration indices using Taylor approximations. We provide two sets of

approximation results: when firms have small market shares (Section 3.1), and when industry

conduct is close to monopolistic competition (Section 3.2).

As a competitive benchmark for the case without market power, we use the equilibrium

outcome under monopolistic competition rather than perfect competition. If goods were

homogeneous, then under both price and quantity competition, the equilibrium outcome
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would converge to perfect competition as the population of firms is infinitely replicated, so

that each firm’s limiting size is negligible relative to the size of the market. By contrast, in

our differentiated-goods framework, such an infinite replication results in the monopolistic

competition outcome, as explained in Section 2.2.

In our model, if consumers have access to an outside option (H0 > 0), then the sum

of the choice probabilities for the firms’ products, Σ ≡
∑

f∈F sf , is strictly less than one.

By contrast, in antitrust practice, the outside option is not accounted for, implying that

firms’ market shares always add up to one. In the following, we therefore renormalize firms’

market shares when defining concentration indices. Specifically, the Herfindahl index (HHI)

is defined as

HHI ≡
∑
f∈F

(
sf

Σ

)2

.

As we will see below, our higher-order approximations also give rise to the cubic Hannah-Kay

concentration index (CHK), defined as

CHK ≡
∑
f∈F

(
sf

Σ

)3

.

3.1 Approximation Results for Small Firms

For the approximations around small market shares, we assume that consumers have access

to an outside option (H0 > 0), so that Σ < 1. We begin by expressing consumer surplus

and aggregate surplus as functions of the equilibrium profile of firm-level market shares, s ≡
(sf )f∈F . From equation (8), the equilibrium aggregator level H∗ is equal to H0/(1− Σ(s)).

It follows that consumer surplus can be written as:

CS (s) = logH0 − log (1− Σ(s)) . (11)

Note that consumer surplus depends on the firms’ market shares only through their sum.

This is a feature of demand systems satisfying the independence of irrelevant alternatives

(IIA) property, as all the products are equally good substitutes to the outside option.

Adding the firms’ profits (see equation (7)) to consumer surplus, we obtain an expression

for aggregate surplus:

AS (s) = logH0 − log (1− Σ(s)) +
∑
f∈F

αsf

1− αsf
.

Note that aggregate surplus is strictly increasing and strictly convex in the vector of market

shares. In particular, a mean-preserving spread of market shares, which necessarily leaves

consumer surplus unchanged, raises industry profit and thus aggregate surplus by reallocating

market shares towards larger firms charging higher markups.

To approximate the oligopoly distortion to consumer surplus and aggregate surplus when
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firms have small market shares, we proceed as follows. We first fix a vector of market

shares s, and compute the welfare measures CS(s) and AS(s). Using s, we then recover the

type vector T (s) = (T f (s))f∈F that must have given rise to this profile of market shares

under oligopoly. Next, using T (s), we compute our welfare measures under monopolistic

competition as functions of firms’ market shares under oligopoly, CSm(s) and ASm(s). In

Appendix A (see Lemma A.6), we show that

CSm(s) = log
(
H0 + T (s)S ′(0)

)
, (12)

and AS(s) = log
(
H0 + T (s)S ′(0)

)
+ α

T (s)S ′(0)

H0 + T (s)S ′(0)
,

where T (s) ≡
∑

f∈F T f (s). Finally, we apply Taylor’s Theorem to approximate the oligopoly

distortions CS(s)− CSm(s) and AS(s)− ASm(s):

Proposition 1. In the neighborhood of s = 0, the oligopoly distortions are:6

CS(s)− CSm(s) = −αΣ(s)2
(
HHI(s) +

1

2
(1 + 2α)Σ(s) CHK(s)

)
+ o

(
∥s∥3

)
,

AS(s)− ASm(s) = −αΣ(s)2
(
HHI(s)(1− αΣ(s)) +

1

2
(1 + 3α)Σ(s) CHK(s)

)
+ o

(
∥s∥3

)
.

Proof. See Appendix A.

To see why the distortion to consumer surplus increases with the Herfindahl index and

the cubic Hannah-Key index, consider a mean-preserving spread of the market share vector

s under oligopoly. This raises both concentration indices (as these are convex functions of

s) while leaving consumer surplus unchanged, as CS(s) depends only on Σ(s) (see equa-

tion (11)). The concavity of the market-share fitting-in function S(·), which comes from the

fact that a firm with a higher type tends to charge a higher markup, implies that the mean-

preserving spread of the market share vector must have been caused by a sum-increasing

change in the vector of firm types.7 As consumer surplus under monopolistic competition

depends only on the sum of those types (see equation (12) above), this change increases

CSm(s).

Note that the oligopoly distortions to consumer surplus and aggregate surplus coincide

at the second order, as Σ(s)3 is of third order. Put differently, at the second order, there is

no difference between industry profit under oligopoly and monopolistic competition. At the

third order, the difference is given by

α2Σ(s)3
[
HHI(s)− 1

2
CHK(s)

]
,

6o(·) is Landau’s little-o notation: f(x) = o(g(x)) in the neighborhood of x = x0 if f(x)/g(x) −→
x→x0

0.

7The concavity of S is stated and proven in Lemma XXVI in the Online Appendix to Nocke and Schutz
(2018); see also equation (21) in the Appendix.
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with the term inside brackets being strictly positive and strictly convex in s. Thus, the gap

between industry profit under oligopoly and monopolistic competition widens as the industry

becomes more concentrated.

3.2 Approximation Results aroundMonopolistic Competition Con-

duct

We now provide an alternative approximation of the oligopoly distortions, namely one involv-

ing only small departures from monopolistic competition conduct, but without restricting the

size of firms or imposing that there is a positive outside option.

Fix a conduct parameter θ ∈ [0, 1] and a type vector (T f )f∈F . The equilibrium aggregator

level is denoted H∗(θ), and firm f ’s market share is sf (θ) = S
(
T f/H∗(θ), θ

)
. Equilibrium

consumer surplus and aggregate surplus are given by

CS(θ) = logH∗(θ) and AS(θ) =

[
logH∗(θ) +

∑
f∈F

αsf (θ)

1− αθsf (θ)

]
.

We can now provide a first-order Taylor approximation of the oligopoly distortions in the

neighborhood of θ = 0, i.e., close to monopolistic competition conduct:

Proposition 2. In the neighborhood of θ = 0, the oligopoly distortions are

CS(θ)− CS(0) = −αΣ(θ)2HHI(θ)θ − α

2
Σ(θ)3

[
(1 + 2α) CHK(θ)− αΣ(θ)HHI(θ)2

]
θ2 + o(θ2)

and

AS(θ)− AS(0) = −αΣ(θ)2HHI(θ) (1− αΣ(θ)) θ − 1

2
αΣ(θ)3×[(

1 + 3α− (α + 2α2)Σ(θ)
)
CHK(θ)−

(
α + 2α2(1− Σ(θ))

)
Σ(θ)HHI(θ)2

]
+ o(θ2).

Proof. See Appendix B.

As in the approximation with small market shares, at the first order in θ, the oligopoly

distortions to consumer surplus and aggregate surplus are proportional to the Herfindahl

index. At the second order, the distortions also depend on the cubic Hannah-Kay index.

An interesting special case arises under MNL demand (α = 1) without an outside option

(Σ = 1). The oligopoly distortion to aggregate surplus simplifies to

AS(θ)− AS(0) = −1

2
θ2
(
CHK−HHI2

)
+ o(θ2).

Thus, at the first order in θ, there is no distortion. The intuition is that, in the absence

of an outside option, the level of the average markup is irrelevant for aggregate surplus,

as it is merely a transfer from consumers to firms. Hence, any inefficiencies must be due
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to markup heterogeneity, which are however of second order. At that order, the oligopoly

distortion to aggregate surplus is proportional to the difference between the cubic Hannah-

Kay index and the square of the Herfindahl index. The Cauchy-Schwarz inequality implies

that that difference is strictly positive if firms are asymmetric and equal to zero otherwise (see

footnote 12 below). Note that, as CHK−HHI2 is not convex in the market share vector, it is

generally not true that greater industry concentration results in a larger oligopoly distortion.

For example, it is easily seen that CHK−HHI2 vanishes not only when firms become perfectly

symmetric, but also in the limit as one of the firms’ market share tends to 1 (while those of

the others tend to zero).

4 Concentration Indices and Resource (Mis-)Allocation

In this section, we propose a resource-based decomposition of the oligopoly distortion to

aggregate surplus in the spirit of the macroeconomics literature on misallocation (Restuccia

and Rogerson, 2008; Hsieh and Klenow, 2009). The decomposition involves two terms. The

first term, which is driven by the overall level of the average markup, measures the extent

to which the industry does not utilize the efficient amount of resources for production. The

second term, which is driven by markup heterogeneity, captures the misallocation of resources

within the industry. In Section 4.1, we provide results on the first term of the decomposition.

We show that oligopolistic market power results in resources being under-utilized under CES

demand, but not necessarily under MNL demand.

Turning our attention to the second term, we show in Section 4.2 that, regardless of

the details of the demand system, within-industry resource allocation is efficient if and only

if relative markups are equalized across products. As, with MNL demand, this condition

is typically not satisfied under monopolistic competition (our competitive benchmark), not

even across products within the same firm, this leads us to focus on CES demand for the

remainder of the section. We approximate the loss in aggregate surplus from within-industry

resource misallocation around small market shares in Section 4.3, and around monopolistic

competition conduct in Section 4.4.

4.1 Over- or Under-Utilization of Resources

In this subsection, we focus on the first term of our decomposition. In general, it is unclear

whether the industry uses too few or too many resources relative to the competitive bench-

mark. On the one hand, equilibrium prices are higher than in the competitive benchmark,

implying a lower aggregate demand, and thus fewer resources being used for production.

On the other hand, as larger, more efficient firms charge higher equilibrium markups, con-

sumption is distorted towards less efficient firms, which may result in more resources being

used.

We now show that, under the assumption of CES demand, oligopolistic market power

always results in too few resources being used. The amount of resources employed in the

12



equilibrium with conduct parameter θ is equal to

C(θ) =
∑
j∈N

cjDj(p) =
∑
j∈N

pjDj(p)−
∑
j∈N

(pj − cj)Dj(p)

=
∑
j∈N

−pjh
′
j(pj)

H(p)
−
∑
f∈F

Πf (p) = (σ − 1)
∑
j∈N

hj(pj)

H(p)
−
∑
f∈F

Πf (p)

=
α

1− α
Σ(θ)− Π(θ), (13)

where

Π(θ) ≡ α
∑
f∈F

sf (θ)

1− αθsf (θ)

is equilibrium industry profit.

As θ increases from 0 (monopolistic competition conduct) to 1 (fully fledged oligopoly

conduct), the industry becomes less competitive and all prices increase. This implies that Σ,

the firms’ aggregate market share, weakly decreases; the decrease is strict if consumers have

access to an outside option. Moreover, the equilibrium profit of every firm f increases for

two reasons: first, firm f ’s rivals raise their prices; second, firm f best-responds to that price

increase. It follows that C(0) > C(1). The following proposition generalizes these insights

by showing that C(θ) is strictly decreasing in θ:

Proposition 3. Under CES demand, an increase in the conduct parameter θ strictly re-

duces the amount of resources used for production, C(θ). In particular, under fully fledged

oligopoly (θ = 1), the industry uses strictly fewer resources than under monopolistic com-

petition (θ = 0). That is, an oligopolistic industry under-utilizes resources relative to the

competitive benchmark.

Proof. See Appendix C.

Although the idea that an oligopoly tends to under-utilize resources relative to the com-

petitive benchmark may seem intuitive (because oligopolies tend to underproduce), it is easy

to construct counterexamples. Indeed, we now show that, under MNL demand, both over-

and under-utilization can arise. The examples below feature MNL demand with two prod-

ucts, 1 and 2, sold by firms f1 and f2, respectively. With this specification, the total amount

of resources used when the conduct parameter is θ is C(θ) = c1s
f1(θ) + c2s

f2(θ).8 We denote

by µf (θ) the equilibrium ι-markup of firm f when the conduct parameter is θ.

Example 1 (over-utilization of resources under MNL demand): Suppose that there

is no outside option, and marginal costs and qualities satisfy c1 < c2 and a1 = a2, respectively.

Under monopolistic competition, the two firms charge the same absolute markup, µf1(0) =

8Without loss of generality, we set the price sensitivity parameter λ equal to 1 to ease notation.
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µf2(0) = 1. Instead, when θ = 1, we have that

µf1(1) = m

(
ea−c1

H∗(1)
, 1

)
> m

(
ea−c2

H∗(1)
, 1

)
= µf2(1),

as the markup fitting-in function is strictly increasing in its first argument. It follows that

sf1(1) < sf1(0) and sf2(1) > sf2(0), so that C(1) > C(0). Thus, this duopoly over-utilizes

resources relative to the competitive benchmark.

Example 2 (under-utilization of resources under MNL demand): Suppose that

there is an outside option (H0 > 0), and marginal costs and qualities satisfy c1 = c2 = c and

a1 = a2 = a. As firms are symmetric, they charge the same absolute markup in equilibrium,

µf1(θ) = µf2(θ). As that common markup is strictly higher under oligopoly than under

monopolistic competition, µf (1) > 1 = µf (0), we have that sf (1) < sf (0), which implies

that C(1) < C(0). Thus, this oligopoly under-utilizes resources relative to the competitive

benchmark.

4.2 Efficient Within-Industry Resource Allocation

Turning to the second term of our decomposition, we now fully characterize the efficient

within-industry resource allocation under minimal assumptions on the demand system. Sup-

pose that the representative consumer has quasi-linear preferences that can be represented

by the decreasing, concave, and C1 sub-utility function U(x), where x = (xj)j∈N is the output

vector. Let p ≡ ∇U denote the inverse demand function. Each product j has a constant

unit cost of production cj, incurred in units of the Hicksian composite commodity. Consider

the problem of maximizing aggregate surplus subject to the constraint of using C units of

the resource for production:

max
x∈RN

+

U(x)−
∑
j∈N

cjxj s.t.
∑
j∈N

cjxj = C. (14)

The following proposition has appeared in various forms in the literature on misalloca-

tion:9

Proposition 4. Any interior solution x∗ to maximization problem (14) must feature a com-

mon relative markup on all of the products. That is, pi(x
∗)/ci = pj(x

∗)/cj for every i, j ∈ N .

Proof. Suppose indeed that x∗ is an interior solution to maximization problem (14). Then,

for some Lagrange multiplier ζ, x∗ must maximize the Lagrangian

U(x)−
∑
j∈N

cjxj + ζ

(
C −

∑
j∈N

cjxj

)
.

9For instance, Pellegrino (forthcoming) obtains the same result for the special case in which the sub-utility
function U is quadratic, giving rise to linear demand (see his Proposition 5).
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Hence, for each product i, the first-order condition ∂U/∂xi − (1 + ζ)ci = 0 must hold at x∗.

As ∂U/∂xi = pi(x), this implies that pi(x
∗)/ci = 1 + ζ for every i.

Thus, there is misallocation whenever relative markups are not equalized across products.

Recall from Section 2.2 that, under MNL demand, a firm charges the same absolute markup

over all of its products. This means that, unless all of the firm’s products have the same unit

cost, relative markups vary within the firm’s product portfolio, implying that resources are

misallocated within the firm. For the same reason, the monopolistic competition outcome,

which we view as the benchmark outcome undistorted by oligopolistic market power, features

misallocation whenever there is cost heterogeneity. We therefore focus on the case of CES

demand in the remainder of this section.

Suppose indeed that demand is of the CES type. It is easily shown that maximization

problem (14) has a unique solution, which must be interior. By Proposition 4, that solution

features a common relative markup over all of the products, which, given the assumption

of CES demand, is equivalent to there being a common ι-markup on all the products. This

property clearly holds in the monopolistic competition outcome, where all firms set their

ι-markups equal to 1. Hence, that benchmark outcome does not suffer from misallocation.

Under oligopoly, each firm f charges the same ι-markup µf over all the products in its

portfolio, implying that there is no resource misallocation within a given firm. However,

unless equilibrium ι-markups are equalized across firms, which happens in equilibrium only

if all firms have the same type, there is misallocation across firms.

4.3 Misallocation: Approximation for Small Firms

In this subsection, we approximate the loss in aggregate surplus from resource misallocation

in the neighborhood of small smarket shares for the case of CES demand. As in Section 3.1,

we assume that consumers have access to an outside option, H0 > 0, so that the equilibrium

aggregator level is given by H∗(s) = H0/(1 − Σ(s)). Consider the version of maximization

problem (14) in which prices are set to maximize aggregate surplus subject to the constraint

of using as much resources as in the oligopolistic equilibrium. From equation (13) above, we

see that the amount of resources used in the oligopolistic equilibrium is given by

C(s) =
α

1− α
Σ(s)− Π(s), (15)

where

Π(s) ≡ α
∑
f∈F

sf

1− αsf

is equilibrium industry profit.

Moreover, by Proposition 4, the solution to the maximization problem features a com-

mon relative markup, and thus, under CES demand, a common ι-markup µ̃, over all of the

products (regardless of ownership). With such a common ι-markup, the amount of resources
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used is given by10

C̃ =
α

1− α
Σ̃− αµ̃Σ̃, (16)

where

Σ̃ ≡ (1− (1− α)µ̃)
α

1−αT
H0 + (1− (1− α)µ̃)

α
1−αT

is the market share of the inside goods given the industry-wide ι-markup µ̃. (Recall from

above that T is the sum of the firms’ types.)

For what follows, it is more convenient to work directly with the market share Σ̃. We

thus invert the relationship between µ̃ and Σ̃ to obtain:

µ̃ =
1

1− α

1−(H0

T
Σ̃

1− Σ̃

) 1−α
α

 .

The amount of resources used can then be rewritten as a function of Σ̃ only:

C̃(Σ̃) =
α

1− α

(
H0

T
Σ̃

1− Σ̃

) 1−α
α

Σ̃.

The resource constraint therefore becomes: C̃(Σ̃) = C(s), which uniquely pins down

Σ̃(s). Industry profit in this allocation is given by

Π̃(s) = αµ̃Σ̃ =
α

1− α

1−(H0

T
Σ̃(s)

1− Σ̃(s)

) 1−α
α

 Σ̃(s).

Using the resource constraint, this simplifies to

Π̃(s) =
α

1− α
(Σ̃(s)− Σ(s)) + Π(s)

10To see this, note that

C̃ =
∑
j∈N

pjDj(p)−
∑
j∈N

(pj − cj)Dj(p) =
∑
j∈N

−pjh
′
j(pj)

H(p)
−
∑
j∈N

pj − cj
pj

−pjh
′
j(pj)

H(p)

= (σ − 1)

∑
j∈N

hj(pj)

H(p)
− µ̃

σ

∑
j∈N

hj(pj)

H(p)

 =
α

1− α
Σ̃− αµ̃Σ̃.

The expression for Σ̃ follows immediately, as∑
j∈N

hj(pj) =
∑
j∈N

hj(cj) (1− (1− α)µ̃)
α

1−α = T (1− (1− α)µ̃)
α

1−α .
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As the industry aggregator in the resource-efficient allocation is H̃(s) = H0/(1 − Σ̃(s)),

consumer surplus is given by C̃S(s) = logH0−log(1−Σ̃(s)). Adding up, we obtain aggregate

surplus in the resource-efficient allocation:

ÃS(s) = logH0 − log(1− Σ̃(s)) +
α

1− α
(Σ̃(s)− Σ(s)) + Π(s).

Subtracting this from equilibrium aggregate surplus, we obtain the welfare loss from

resource misallocation:

M(s) = log(1− Σ̃(s))− log(1− Σ(s)) +
α

1− α
(Σ(s)− Σ̃(s)). (17)

Our goal is to approximate M(s) around small market shares. We proceed as in Sec-

tion 3.1. We fix an equilibrium vector of market shares s and recover the implied vector of

types T . Using this vector of types, we obtain Σ̃(s) from the resource constraint. We can

then compute M(s) and approximate it. We obtain:

Proposition 5. Under CES demand, in the neighborhood of s = 0, the impact of resource

misallocation on aggregate surplus is:

M(s) = −1

2
αΣ(s)3

(
CHK(s)− HHI(s)2

)
+ o

(
∥s∥3

)
.

Proof. See Appendix D.

A first observation is that M(s) is negligible at the second order. This holds because

Σ(s)3 is of order 3, while HHI(s)2 and CHK(s) are both of order 0, as

1

|F|2
≤ HHI(s)2 ≤ 1 and

1

|F|2
≤ CHK(s) ≤ 1.

Thus, there is no resource misallocation at the second order. This means that, at that order,

the oligopoly distortion to aggregate surplus, approximated in Proposition 1, is entirely

driven by resources being underutilized in equilibrium (rather than by resources flowing to

the wrong firms). Misallocation becomes relevant at the third order, where it is proportional

to CHK(s)−HHI2(s).11 As mentioned in Section 3.2, we have that CHK(s)−HHI2(s) ≥ 0,

with the inequality being strict if and only if firms are asymmetric.12 Moreover, as CHK(s)−
HHI2(s) is not convex in the market share vector (see again Section 3.2), it is generally not

true that greater industry concentration results in larger misallocation.

11Note that the function on the right-hand side of the Taylor approximation of Proposition 5 is not a
polynomial in s. In fact, that function is not thrice differentiable at s = 0, implying that it cannot be
approximated by a polynomial at the third order. For this reason, the proof of the proposition is somewhat
non-standard, and involves iterating over the resource constraint, with each iteration generating a higher-
order approximation of Σ̃(s) (see the proof of Lemma D.2 in Appendix D).

12To see this, define the vectors x ≡ ((sf )3/2)f∈F and y ≡ ((sf )1/2)f∈F . By the Cauchy-Schwarz inequality,
we have that x · y ≤ ∥x∥2∥y∥2, with equality if and only if x and y are collinear. Taking squares on both
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4.4 Misallocation: Approximation around Monopolistic Competi-

tion Conduct

In this subsection, we approximate the loss in aggregate surplus from resource misallocation

in the neighborhood of monopolistic competition conduct for the case of CES demand. To

simplify the analysis, we assume that consumers do not have access to an outside option,

H0 = 0. As in Section 4.3, we consider the version of maximization problem (14) in which

prices are set to maximize aggregate surplus subject to the constraint of using as much

resources as in equilibrium. From equation (13) above, we see that the amount of resources

used in equilibrium is given by

C(θ) =
α

1− α
− Π(θ), (18)

where we have used the fact that Σ(θ) = 1 in the absence of an outside option.

The resource-efficient allocation features a common ι-markup, µ̃(θ), over all of the prod-

ucts. The amount of resources used given µ̃(θ) continues to be

C̃ =
α

1− α
Σ̃− αµ̃(θ)Σ̃ =

α

1− α
− αµ̃(θ),

where we have used the fact that Σ̃ = 1 in the absence of an outside option. The resource

constraint, C(θ) = C̃, therefore boils down to αµ̃(θ) = Π(θ).

Note that, under the common ι-markup µ̃(θ), industry profit equals Π̃(θ) = αµ̃(θ)Σ̃ =

αµ̃(θ) in the resource-efficient allocation. It follows that Π(θ) = Π̃(θ), i.e., industry profit in

the equilibrium allocation is equal to that in the resource-efficient allocation. The impact of

resource misallocation on aggregate surplus is therefore equal to

M(θ) ≡ logH∗(θ)− log H̃(θ),

where

H̃(θ) ≡ (1− (1− α)µ̃(θ))
α

1−αT (19)

is the value of the industry aggregator in the resource-efficient allocation. The following

proposition approximates M(θ) at the second order:

Proposition 6. Under CES demand without an outside option, in the neighborhood of θ = 0,

sides, this is equivalent to ∑
f∈F

(sf )2

2

≤

∑
f∈F

(sf )3

∑
f∈F

sf

 ,

with equality if and only if all of the components of s are identical. Dividing both sides by
(∑

f∈F sf
)4

, the

inequality simplifies to CHK(s) ≥ HHI(s)2.
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the impact of resource misallocation on aggregate surplus is

M(θ) = −1

2
α
(
CHK(θ)− HHI(θ)2

)
θ2 + o(θ2).

Proof. See Appendix E.

Thus, as in the approximation around small firms, we find that there is no misallocation

at a low order. At a higher order, the welfare loss from resource misallocation is again

proportional to the difference between the cubic Hannah-Kay concentration index and the

squared Herfindahl index.

5 Conclusion

We study welfare distortions in the Nocke and Schutz (forthcoming) multiproduct-firm pricing

game with CES or MNL demand.13 The model allows for arbitrary product heterogeneity in

terms of marginal costs and qualities, and allows firms to differ in their product portfolios.

The pricing game is fully aggregative, with the industry aggregator being a sufficient statistic

for consumer surplus. Moreover, the model permits type aggregation, in the sense that all

relevant information about a firm’s product portfolio can be summarized by a uni-dimensional

sufficient statistic. Importantly, consumer surplus and aggregate surplus can be expressed as

functions of firm-level equilibrium market shares.14

To gauge the welfare distortions from oligopolistic market power (relative to monopolistic

competition, our competitive benchmark), we derive Taylor approximations both around

small market shares and around monopolistic competition conduct. We find that, at a low

order, the oligopoly distortions to consumer surplus and aggregate surplus are proportional

to the Herfindahl index. At a higher order, these distortions also depend on the cubic

Hannah-Kay concentration index.

We also connect to the macroeconomics literature on resource misallocation by decom-

posing, for the case of CES demand, the welfare loss from oligopoly into two components.

The first component arises from markups being above the monopolistically competitive level,

implying that the industry does not utilize the efficient amount of resources. As we show,

oligopolistic market power results in too few resources being utilized under CES demand,

whereas, under MNL demand, both excessive and insufficient resource employment may

arise.

13As mentioned in Section 2.2, all of our results continue to hold under nested CES or MNL demand,
provided each firm owns one or several entire nests of products.

14In Nocke and Schutz (2023), we provide a complete characterization of the classes of demand systems
giving rise to a fully aggregative pricing game, with the aggregator being a sufficient statistic for consumer
surplus, and satisfying type aggregation. The resulting demand systems, which we refer to as generalized
CES (GCES) and generalized MNL (GMNL), permit arbitrary substitution patterns between the inside
goods and the outside option. Because of the aggregative properties of GCES and GMNL, our approach to
approximating distortions could easily be extended to these demand systems.
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The second component of the decomposition is driven by markup heterogeneity and cap-

tures the extent to which resources are misallocated across firms. We show that for any

well-behaved quasi-linear demand system, efficient within-industry resource allocation re-

quires equalization of relative markups across products. Under MNL demand, such markup

equalization typically does not arise under monopolistic competition, not even within the

same firm. Focusing therefore on the case of CES demand, we approximate the aggregate

surplus loss from within-industry misallocation under the assumption that firms have small

market shares or in the neighborhood of monopolistic competition conduct. We find that, at

a low order, the misallocation component is negligible, implying that the oligopoly distortion

is primarily driven by the industry under-utilizing resources. At a higher order, the misal-

location component is proportional to the difference between the cubic Hannah-Kay index

and the square of the Herfindahl index. Thus, it is generally not true that greater industry

concentration leads to larger within-industry misallocation.

In earlier work (Nocke and Schutz, 2018), we proposed an alternative, demand-side de-

composition of the welfare distortion from oligopolistic market power. The first component

arises from the industry aggregator being below its efficient level. The second component

arises from some firms contributing too little and others too much to the aggregator, due to

markup heterogeneity.15 Relating these components to concentration indices is left for future

research.

Appendix

Throughout this appendix, we use the unnormalized versions of the Herfindahl and Hannah-

Kay concentration indices to ease notation:

ĤHI ≡
∑
f∈F

(sf )2 and ĈHK ≡
∑
f∈F

(sf )3.

A Proof of Proposition 1

We prove a series of lemmas that jointly imply Proposition 1.16

The begin by establishing some key properties of the market-share fitting-in function:

Lemma A.1. The continuous extension of S to R+ is C3. Moreover, S(0) = 0,

S ′(0) =

{
α

α
1−α under CES demand,

e−1 under MNL demand,

15Nocke and Schutz (2018) show that, holding fixed a firm’s contribution to the industry aggregator, its
pricing structure is efficient, in that it maximizes aggregate surplus.

16Lemmas A.1, A.2, A.3, and A.4 below are third-order extensions to Lemmas 6, 9, 10, and 11 in the
Online Appendix to Nocke and Schutz (forthcoming).
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S ′′(0) = −2αS ′(0)2, and S ′′′(0) = −3α(1− 2α)S ′(0)3.

The inverse function Θ ≡ S−1 is C3 on [0, 1). Moreover, Θ(0) = 0, Θ′(0) = 1/S ′(0),

Θ′′(0) = 2α/S ′(0), and Θ′′′(0) = 3α(1 + 2α)/S ′(0).

Proof. We begin by computing S ′. Applying the implicit function theorem to equations (5)–

(6) yields:

S ′(x) =
S(x)

x

(1− S(x))(1− αS(x))

1− S(x) + αS(x)2
. (20)

Differentiating equation (20), we obtain

S ′′(x) = −
(
S(x)

x

)2
α(2− S(x))(1− S(x))(1− αS(x))

(1− S(x) + αS(x)2)3
. (21)

Differentiating once more gives

S ′′′(x) = −
(
S(x)

x

)3
α(1− S(x))(1− αS(x))

(1− S(x) + αS(x)2)5

(
3(1− 2α)− 4(1 + α)S(x)

+ (1 + 13α + 6α2)S(x)2 − 2α(2 + 5α)S(x)3 + 3α2S(x)4
)
. (22)

We thus require the value of limx↓0
S(x)
x

. In the MNL case,

S(x)

x
= e−m(x) = exp

(
−1

1− S(x)

)
−→
x↓0

e−1 .

In the CES case,

S(x)

x
= (1− (1− α)m(x))

α
1−α =

(
1− 1− α

1− αS(x)

) α
1−α

−→
x↓0

α
α

1−α .

Taking limits in equations (20), (21), and (22) gives us the values of S ′(0), S ′′(0), and S ′′′(0).

As S is C3 with strictly positive derivative on R+, it establishes a C3-diffeomorphism from

R+ to [
S(0), lim

x→∞
S(x)

)
= [0, 1).

It follows that Θ is C3. Moreover,

Θ′(s) =
1

S ′ ◦ S−1(s)
,

Θ′′(s) = − S ′′ ◦ S−1(s)

(S ′ ◦ S−1(s))3
,

Θ′′′(s) = −
S′′′◦S−1(s)
S′◦S−1(s)

(S ′ ◦ S−1(s))
3 − S ′′ ◦ S−1(s)× 3 (S ′ ◦ S−1(s))

2 S′′◦S−1(s)
S′◦S−1(s)

(S ′ ◦ S−1(s))6
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=
1

S ′ ◦ S−1(s)

(
− S ′′′ ◦ S−1(s)

(S ′ ◦ S−1(s))3
+ 3

(
S ′′ ◦ S−1(s)

(S ′ ◦ S−1(s))2

)2
)
.

Hence,

Θ′(0) =
1

S ′(0)
,

Θ′′(0) = − 1

S ′(0)

S ′′(0)

S ′(0)2
=

2α

S ′(0)
,

Θ′′′(0) =
1

S ′(0)

(
−S ′′′(0)

S ′(0)3
+ 3

(
S ′′(0)

S ′(0)2

)2
)

=
3α(1 + 2α)

S ′(0)
.

Next, we approximate consumer surplus under oligopoly. We have:

Lemma A.2. H∗(s) = H0/(1− Σ(s)). Moreover, in the neighborhood of s = 0,

CS(s) = logH0 + Σ(s) +
1

2
Σ(s)2 +

1

3
Σ(s)3 + o

(
∥s∥3

)
.

Proof. The first part of the lemma follows immediately from equilibrium condition (8). The

second part follows from the fact that, in the neighborhood of x = 0,

− log(1− x) = x+
1

2
x2 +

1

3
x3 + o(x3).

Next, we compute the first, second, and third (cross-)partial derivatives of the type vector

T (s):

Lemma A.3. For every (f, f ′) ∈ F2,

∂T f

∂sf ′

∣∣∣∣
s=0

=

{
H0

S′(0)
if f = f ′,

0 otherwise.

For every (f, f ′, f ′′) ∈ F3,

∂2T f

∂sf ′∂sf ′′

∣∣∣∣
s=0

=


H0

S′(0)
2(1 + α) if f = f ′ = f ′′,

0 if f ′ ̸= f and f ′′ ̸= f,
H0

S′(0)
otherwise.
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Finally, for every (f, f ′, f ′′, f ′′′) ∈ F4,

∂3T f

∂sf ′∂sf ′′∂sf ′′′

∣∣∣∣
s=0

=
H0

S ′(0)


6 + 9α + 6α2 if f = f ′ = f ′′ = f ′′′,

2α + 4 if (f ′, f ′′, f ′′′) ∈ P2(f),

2 if (f ′, f ′′, f ′′′) ∈ P1(f),

0 otherwise,

where

P1(f) =
{
(f 1, f 2, f 3) ∈ F3 : f = f i ̸= f j, fk, for some permutation (i, j, k) of (1, 2, 3)

}
,

and

P2(f) =
{
(f 1, f 2, f 3) ∈ F3 : f = f i = f j ̸= fk, for some permutation (i, j, k) of (1, 2, 3)

}
.

Proof. Let f ∈ F . As sf = S(T f (s)/H∗(s)), we have that

T f (s) = H∗(s)S−1(sf ) = H0 Θ(sf )

1− Σ(s)
≡ H0Θ(sf )Ψ(s),

where the inverse function Θ was defined in Lemma A.1.

Note that, for every (f, f ′, f ′′) ∈ F3,

Ψ(0) =
∂Ψ

∂sf

∣∣∣∣
s=0

= 1,

∂2Ψ

∂sf∂sf ′

∣∣∣∣
s=0

= 2,

∂3Ψ

∂sf∂sf ′∂sf ′′

∣∣∣∣
s=0

= 6.

Therefore, for every (f, f ′) ∈ F2,

∂T f

∂sf ′

∣∣∣∣
s=0

= H0

(
∂Θ(sf )

∂sf ′ Ψ(s) + Θ(sf )
∂Ψ

∂sf ′

)∣∣∣∣
s=0

=

{
H0

S′(0)
if f = f ′,

0 if f ̸= f ′.

For every (f, f ′, f ′′) ∈ F3,

∂2T f

∂sf ′∂sf ′′

∣∣∣∣
s=0

= H0

(
∂2Θ(sf )

∂sf ′∂sf ′′Ψ(s) + Θ(sf )
∂2Ψ

∂sf ′∂sf ′′ +
∂Θ(sf )

∂sf ′

∂Ψ

∂sf ′′ +
∂Θ(sf )

∂sf ′′

∂Ψ

∂sf ′

)∣∣∣∣
s=0

= H0

(
∂2Θ(sf )

∂sf ′∂sf ′′ +
∂Θ(sf )

∂sf ′ +
∂Θ(sf )

∂sf ′′

)∣∣∣∣
s=0
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= H0 ×


Θ′′(0) + 2Θ′(0) if f = f ′ = f ′′

0 if f ′, f ′′ ̸= f

Θ′(0) otherwise

=
H0

S ′(0)
×


2(α + 1) if f = f ′ = f ′′

0 if f ′, f ′′ ̸= f

1 otherwise.

Finally, for every (f, f ′, f ′′, f ′′′) ∈ F3,

∂3T f

∂sf ′∂sf ′′∂sf ′′′

∣∣∣∣
s=0

= H0

(
∂3Θ(sf )

∂sf ′∂sf ′′∂sf ′′′Ψ(s) + Θ(sf )
∂3Ψ

∂sf ′∂sf ′′∂sf ′′′ +
∂2Θ(sf )

∂sf ′∂sf ′′

∂Ψ

∂sf ′′′

+
∂Θ(sf )

∂sf ′′′

∂2Ψ

∂sf ′∂sf ′′ +
∂2Θ(sf )

∂sf ′∂sf ′′′

∂Ψ

∂sf ′′ +
∂Θ(sf )

∂sf ′

∂2Ψ

∂sf ′′∂sf ′′′

+
∂2Θ(sf )

∂sf ′′∂sf ′′′

∂Ψ

∂sf ′ +
∂Θ(sf )

∂sf ′′

∂2Ψ

∂sf ′∂sf ′′′

)∣∣∣∣
s=0

= H0

(
∂3Θ(sf )

∂sf ′∂sf ′′∂sf ′′′ +
∂2Θ(sf )

∂sf ′∂sf ′′ + 2
∂Θ(sf )

∂sf ′′′ +
∂2Θ(sf )

∂sf ′∂sf ′′′

+ 2
∂Θ(sf )

∂sf ′ +
∂2Θ(sf )

∂sf ′′∂sf ′′′ + 2
∂Θ(sf )

∂sf ′′

)∣∣∣∣
s=0

=
H0

S ′(0)


3α(1 + 2α) + 3(2α + 2) if f = f ′ = f ′′ = f ′′′

2α + 2 + 2 if (f ′, f ′′, f ′′′) ∈ P2(f)

2 if (f ′, f ′′, f ′′′) ∈ P1(f)

0 otherwise

=
H0

S ′(0)


6 + 9α + 6α2 if f = f ′ = f ′′ = f ′′′

2α + 4 if (f ′, f ′′, f ′′′) ∈ P2(f)

2 if (f ′, f ′′, f ′′′) ∈ P1(f)

0 otherwise.

We now use Lemma A.3 to obtain a third-order Taylor approximation of T f (s) in the

neighborhood of s = 0:

Lemma A.4. In the neighborhood of s = 0,

T f (s) =
H0

S ′(0)

(
sf +

(
α(sf )2 + sfΣ(s)

)
+

(
α(1 + 2α)

2
(sf )3 + α(sf )2Σ(s) + sfΣ(s)2

))
+o(∥s∥3).

Proof. By Lemma A.3, first-order terms are simply given by H0

S′(0)
sf . Second-order terms are
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given by

H0

S ′(0)

1

2

(
2(1 + α)(sf )2 + 2sf

∑
g ̸=f

sg

)
=

H0

S ′(0)

(
α(sf )2 + sfΣ

)
.

Finally, third-order terms are:

H0

S ′(0)

1

6

(6 + 9α + 6α2)(sf )3 + (2α + 4)
∑

(f ′,f ′′,f ′′′)∈P2(f)

sf
′
sf

′′
sf

′′′
+ 2

∑
(f ′,f ′′,f ′′′)∈P1(f)

sf
′
sf

′′
sf

′′′


=

H0

S ′(0)

1

6

(
(6 + 9α + 6α2)(sf )3 + 3(2α + 4)(sf )2

∑
g ̸=f

sg + 6sf
∑
g,g′ ̸=f

sgsg
′

)

=
H0

S ′(0)

1

6

(
(6 + 9α + 6α2)(sf )3 + 3(2α + 4)(sf )2(Σ− sf ) + 6sf (Σ− sf )2

)
=

H0

S ′(0)

1

6

(
(−6 + 3α + 6α2)(sf )3 + 3(2α + 4)(sf )2Σ + 6sf (Σ2 − 2Σsf + (sf )2)

)
=

H0

S ′(0)

1

6

(
(3α + 6α2)(sf )3 + 6α(sf )2Σ + 6sfΣ2

)
.

The lemma follows by Taylor’s theorem.

Adding up over all the firms, we obtain a third-order Taylor approximation of T (s), the

sum of the firms’ types:

Lemma A.5. In the neighborhood of s = 0,

S ′(0)

H0
T (s) = Σ(s) +

(
αĤHI(s) + Σ(s)2

)
+

(
α(1 + 2α)

2
ĈHK(s) + αĤHI(s)Σ(s) + Σ(s)3

)
+ o(∥s∥3).

Proof. This follows immediately from Lemma A.4.

Next, we provide expressions for consumer surplus, industry profit, and aggregate surplus

under monopolistic competition, CSm(s), Πm(s), and ASm(s), as functions of the market

shares vector in the oligopolistic equilibrium.

Lemma A.6. The following holds:

CSm(s) = logH0 + log

(
1 + T (s)

S ′(0)

H0

)
,

Πm(s) = α

(
1− 1

1 + T (s)S
′(0)
H0

)
,

and AS(s) = logH0 + log

(
1 + T (s)

S ′(0)

H0

)
+ α

(
1− 1

1 + T (s)S
′(0)
H0

)
.
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Proof. Under monopolistic competition, all the firms set their ι-markups equal to 1. Hence,

in the case of MNL demand,

CSm(s) = log

(
H0 +

∑
f∈F

T f (s) e−1

)
= logH0 + log

(
1 + T (s)

S ′(0)

H0

)

and

Πm(s) =
∑
f∈F

T f (s) e−1

H0 +
∑

g∈F T g(s) e−1
= 1− 1

1 + T (s)S
′(0)
H0

,

where we have used the fact that S ′(0) = e−1 (see Lemma A.1).

In the case of CES demand,

CSm(s) = log

(
H0 +

∑
f∈F

T f (s)α
α

1−α

)
= logH0 + log

(
1 + T (s)

S ′(0)

H0

)

and

Πm(s) =
∑
f∈F

α
T f (s)α

α
1−α

H0 +
∑

g∈F T g(s)α
α

1−α

= α

(
1− 1

1 + T (s)S
′(0)
H0

)
.

We now provide a third-order Taylor expansion of CSm(s):

Lemma A.7. In the neighborhood of s = 0,

CSm(s) = logH0 + Σ(s) +
1

2
Σ(s)2 +

1

3
Σ(s)3 + αĤHI(s) +

α(1 + 2α)

2
ĈHK(s) + o(∥s∥3).

Proof. At the third order in the neighborhood of x = 0, we have that

log(1 + x) = x− 1

2
x2 +

1

3
x3 + o(x3).

Combining this with Lemma A.5 and eliminating higher-order terms, we obtain

CSm(s) = logH0 + Σ+ αĤHI + Σ2 +
α(1 + 2α)

2
ĈHK + αĤHIΣ + Σ3

− 1

2

(
Σ + αĤHI + Σ2

)2
+

1

3
Σ3 + o(∥s∥3)

= logH0 + Σ+ αĤHI + Σ2 +
α(1 + 2α)

2
ĈHK + αĤHIΣ + Σ3

− 1

2

(
Σ2 + 2αĤHIΣ + 2Σ3

)
+

1

3
Σ3 + o(∥s∥3)

= logH0 + Σ+
1

2
Σ2 +

1

3
Σ3 + αĤHI +

α(1 + 2α)

2
ĈHK + o(∥s∥3).

Combining Lemmas A.2 and A.7, we obtain the approximation of the distortion to con-

sumer surplus:
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Lemma A.8. In the neighborhood of s = 0,

CS(s)− CSm(s) = −α

[
ĤHI(s) +

1 + 2α

2
ĈHK(s)

]
+ o

(
∥s∥3

)
.

Next, we turn our attention to industry profit,

Π(s) ≡
∑
f∈F

(
1

1− αsf
− 1

)
.

Lemma A.9. In the neighborhood of s = 0,

Π(s) = αΣ(s) + α2ĤHI(s) + α3ĈHK(s) + o
(
∥s∥3

)
.

Proof. This follows immediately from the fact that, in the neighborhood of x = 0,

1

1− αx
= 1 + αx+ α2x2 + α3x3 + o(x3).

The next involves approximating industry profit under monopolistic competition.

Lemma A.10. In the neighborhood of s = 0,

Πm(s) = α

(
Σ(s) + αĤHI(s) +

α(1 + 2α)

2
ĈHK(s)− αĤHI(s)Σ(s)

)
+ o(∥s∥3).

Proof. Note that, at the third order in the neighborhood of x = 0,

1− 1

1 + x
= x− x2 + x3 + o(x3).

Combining this with the formula for Πm(s) in Lemma A.6 and the approximation of T (s)

in Lemma A.5, and eliminating higher-order terms, we obtain:

Πm(s) = α

(
Σ + αĤHI + Σ2 +

α(1 + 2α)

2
ĈHK + αĤHIΣ + Σ3

−
(
Σ + αĤHI + Σ2

)2
+ Σ3

)
+ o(∥s∥3)

= α

(
Σ + αĤHI + Σ2 +

α(1 + 2α)

2
ĈHK + αĤHIΣ + Σ3

−
(
Σ2 + 2αĤHIΣ + 2Σ3

)
+ Σ3

)
+ o(∥s∥3)

= α

(
Σ + αĤHI +

α(1 + 2α)

2
ĈHK− αĤHIΣ

)
+ o(∥s∥3).

Combining Lemmas A.8, A.9, and A.10, we obtain the approximation of the aggregate

surplus distortion:
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Lemma A.11. In the neighborhood of s = 0,

AS(s)− ASm(s) = −α

(
ĤHI(s)(1− αΣ(s)) +

1

2
(1 + 3α)ĈHK(s)

)
+ o

(
∥s∥3

)
.

B Proof of Proposition 2

We prove a series of lemmas that jointly imply Proposition 2. These lemmas correspond

to higher-order versions of Lemmas 16–19 in the Online Appendix to Nocke and Schutz

(forthcoming).

Recall from Section 2.2 that the markup and market-share fitting-in functions, m(x, θ)

and S(x, θ), jointly solve the system

µ =
1

1− θαs
,

s =

{
x (1− (1− α)µ)

α
1−α under CES demand,

x e−µ under MNL demand.

We compute the first and second partial derivatives of S(x, θ) at θ = 0:

Lemma B.1. For every α ∈ (0, 1] and x > 0, the partial derivatives of S at θ = 0 are:

∂S

∂x

∣∣∣∣
(x,0)

=
S(x, 0)

x
and

∂S

∂θ

∣∣∣∣
(x,0)

= −αS(x, 0)2.

The second partial derivatives of S at θ = 0 are:

∂2S

∂x2

∣∣∣∣
(x,0)

= 0,
∂2S

∂θ2

∣∣∣∣
(x,0)

= (2α− 1)αS(x, 0)3, and
∂2S

∂x∂θ

∣∣∣∣
(x,0)

= −2α
S(x, 0)2

x
.

Proof. Under CES demand,

S = x (1− (1− α)m)
α

1−α = x

(
1− 1− α

1− θαS

) α
1−α

= xα
α

1−α

(
1− θS

1− θαS

) α
1−α

.

Taking logs and differentiating yields

dS

S
=

dx

x
+

α

1− α

[
dS

S
+

dθ

θ

](
αθS

1− αθS
− θS

1− θS

)
.

Rearranging terms, we obtain

dS

S

1− θS + α(θS)2

(1− θS)(1− αθS)
=

dx

x
− αS

(1− θS)(1− αθS)
dθ.
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The partial derivatives of S are therefore given by

∂S

∂x
=

S

x

(1− θS)(1− αθS)

1− θS + α(θS)2
and

∂S

∂θ
=

−αS2

1− θS + α(θS)2
. (23)

Under MNL demand,

S = x e−m = x exp

(
− 1

1− θS

)
.

Proceeding as above, we obtain

dS

S

1− θS + (θS)2

(1− θS)2
=

dx

x
− Sdθ

(1− θS)2

Hence,
∂S

∂x
=

S

x

(1− θS)2

1− θS + (θS)2
and

∂S

∂θ
=

−S2

1− θS + (θS)2
,

which boils down to equation (23) with α = 1. Plugging θ = 0 into equation (23), we obtain

the values of the first partial derivatives announced in the statement of the lemma.

Next, we differentiate one more time at θ = 0. We obtain:

∂2S

∂x2

∣∣∣∣
(x,0)

= − S(x, 0)

x2
× 1 +

∂S

∂x

∣∣∣∣
(x,0)

1

x
× 1 +

∂S

∂x

∣∣∣∣
(x,0)

d

ds

(1− θs)(1− αθs)

1− θs+ α(θs)2

∣∣∣∣
θ=0,s=S(x,0)

= 0,

∂2S

∂x∂θ

∣∣∣∣
(x,0)

= − 2αS(x, 0)
∂S

∂x

∣∣∣∣
(x,0)

− αS(x, 0)2
∂S

∂x

∣∣∣∣
(x,0)

d

ds

1

1− θs+ α(θs)2

∣∣∣∣
θ=0,s=S(x,0)

= − 2α
S(x, 0)2

x
+ 0,

∂2S

∂θ2

∣∣∣∣
(x,0)

= − 2αS(x, 0)
∂S

∂θ

∣∣∣∣
(x,0)

− αS(x, 0)2
∂S

∂θ

∣∣∣∣
(x,0)

d

ds

1

1− θs+ α(θs)2

∣∣∣∣
θ=0,s=S(x,0)

− αS(x, 0)2
d

dθ

1

1− θs+ α(θs)2

∣∣∣∣
θ=0,s=S(x,0)

= 2α2S(x, 0)3 + 0− αS(x, 0)3.

Next, we compute the first and second derivatives of H∗(θ):

Lemma B.2. The following holds:

d logH∗

dθ

∣∣∣∣
θ=0

= −αĤHI(0) and
d2 logH∗

dθ2

∣∣∣∣
θ=0

= (2α− 1)αĈHK(0)− 3α2ĤHI(0)2.

Proof. Totally differentiating equilibrium condition (10), we obtain:

− dH∗

H∗(θ)

(
H0

H∗(θ)
+
∑
f∈F

T f

H∗(θ)

∂S

∂x

(
T f

H∗(θ)
, θ

))
+ dθ

∑
f∈F

∂S

∂θ

(
T f

H∗(θ)
, θ

)
= 0.
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Hence,

d logH∗

dθ
=

∑
f∈F

∂S
∂θ

(
T f

H∗(θ)
, θ
)

H0

H∗(θ)
+
∑

f∈F
T f

H∗(θ)
∂S
∂x

(
T f

H∗(θ)
, θ
) . (24)

Using Lemma B.1 and the equilibrium condition, we see that, at θ = 0, the denominator of

the above expression is equal to 1, whereas the numerator is equal to −αĤHI(0), as stated.

Next, we differentiate the right-hand side of equation (24) with respect to θ at θ = 0,

keeping in mind that the denominator is equal to 1 at that point and that ∂2S(x, 0)/∂x2 = 0:

d2 logH∗

dθ2

∣∣∣∣
θ=0

=
∑
f∈F

∂2S(T f/H∗, 0)

∂θ2
− d logH∗

dθ

∑
f∈F

T f

H∗
∂2S(T f/H∗, 0)

∂θ∂x
−
∑
f∈F

∂S(T f/H∗, 0)

∂θ

×

[
−d logH∗

dθ

(
H0

H∗ +
∑
f∈F

T f

H∗
∂S(T f/H∗, 0)

∂x

)
+
∑
f∈F

T f

H∗
∂2S(T f/H∗, 0)

∂x∂θ

]
= (2α− 1)αĈHK(0)− 2α2ĤHI(0)2 + αĤHI(0)

[
αĤHI(0)− 2αĤHI(0)

]
= (2α− 1)αĈHK(0)− 3α2ĤHI(0)2,

where we have used Lemma B.1 and the fact that, at θ = 0, d logH∗/dθ = −αĤHI to obtain

the second equality.

Next, we obtain the Taylor approximations of Σ(θ) and HHI(θ):

Lemma B.3. In the neighborhood of θ = 0,

Σ(θ) = Σ(0)− αĤHI(θ) (1− Σ(θ)) θ

− 1

2
α (1− Σ(θ))

[
(1 + 2α)ĈHK(θ)− 2αĤHI(θ)2

]
θ2 + o(θ2),

ĤHI(0) = ĤHI(θ) + 2α
[
ĈHK(θ)− ĤHI(θ)2

]
θ + o(θ)

Proof. We begin by computing sf ′(0), sf ′′(0), Σ′(0), and Σ′′(0). As sf (θ) = S(T f/H∗(θ), θ),

we have that
dsf

dθ
= −d logH∗

dθ

T f

H∗
∂S(T f/H∗, θ)

∂x
+

∂S(T f/H∗, θ)

∂θ
.

Applying Lemma B.1, we obtain

sf ′(0) = α
(
ĤHI(0)sf (0)− sf (0)2

)
,

and thus

Σ′(0) = −αĤHI(0)(1− Σ(0)).
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Differentiating one more time at θ = 0 and applying Lemmas B.1 and B.2 yields

sf ′′(0) = − d2 logH∗

dθ2
sf (0) + αĤHI×

(
−d logH∗

dθ

)
T f

H∗
∂S(T f/H∗, θ)

∂x

+ αĤHI
T f

H∗
∂2S(T f/H∗, θ)

∂x∂θ
− d logH∗

dθ

T f

H∗
∂2S(T f/H∗, θ)

∂x∂θ
+

∂2S(T f/H∗, θ)

∂θ2

=
(
−(2α− 1)αĈHK(0) + 3α2ĤHI(0)2

)
sf (0) + α2ĤHI(0)2sf (0)− 2α2ĤHI(0)sf (0)2

− 2α2ĤHI(0)sf (0)2 + (2α− 1)αsf (0)3

= (2α− 1)α
(
sf (0)3 − ĈHK(0)sf (0)

)
+ 4α2

(
ĤHI(0)2sf (0)− ĤHI(0)sf (0)2

)
,

so that

Σ′′(0) = (1− Σ(0))
(
(2α− 1)αĈHK(0)− 4α2ĤHI(0)2

)
.

By Taylor’s theorem, we have that, in the neighborhood of θ = 0,

Σ(θ) = Σ(0)− αĤHI(0) (1− Σ(0)) θ + o(θ) = Σ(0)− αĤHI(θ) (1− Σ(θ)) θ + o(θ),

where the second equality follows, as ĤHI(θ) = ĤHI(0) + o(1) and Σ(θ) = Σ(0) + o(1) by

continuity of ĤHI(·) and Σ(·). Moreover,

ĤHI(θ) =
∑
f∈F

(
sf (0) + sf ′(0)θ

)2
+ o(θ)

=
∑
f∈F

(
sf (0)2 + 2sf (0)α

[
(ĤHI(0)sf (0)− sf (0)2

]
θ
)
+ o(θ)

= ĤHI(0) + 2α
[
ĤHI(0)2 − ĈHK(0)

]
θ + o(θ)

= ĤHI(0) + 2α
[
ĤHI(θ)2 − ĈHK(θ)

]
θ + o(θ).

Combining these approximations, we obtain an approximation of ĤHI(·)(1− Σ(·)):

ĤHI(0) (1− Σ(0)) =
(
ĤHI(θ) + 2α

[
ĈHK(θ)− ĤHI(θ)2

]
θ
)

×
(
1− Σ(θ)− αĤHI(θ) (1− Σ(θ)) θ

)
+ o(θ)

= ĤHI(θ) (1− Σ(θ)) + α (1− Σ(θ))
[
2ĈHK(θ)− 3ĤHI(θ)2

]
θ + o(θ).

Finally, we apply again Taylor’s theorem to obtain the second-order approximation of

Σ(·):

Σ(θ) = Σ(0)− αĤHI(0)(1− Σ(0))θ

+
1

2
α (1− Σ(0))

[
((2α− 1)ĈHK(0)− 4αĤHI(0)2

]
θ2 + o(θ2)
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= Σ(0)− αĤHI(θ)(1− Σ(θ))θ − α2 (1− Σ(θ))
[
2ĈHK(θ)− 3ĤHI(θ)2

]
θ2

+
1

2
α (1− Σ(θ))

[
((2α− 1)ĈHK(θ)− 4αĤHI(θ)2

]
θ2 + o(θ2)

= Σ(0)− αĤHI(θ)(1− Σ(θ))θ

+
1

2
α (1− Σ(θ))

[
2ĤHI(θ)2 − (2α + 1)ĈHK(θ)

]
θ2 + o(θ2).

Combining Lemmas B.2 and B.3, we obtain the approximation of the distortion to con-

sumer surplus:

Lemma B.4. In the neighborhood of θ = 0,

CS(θ)− CS(0) = −αĤHI(θ)θ − 1

2
α
[
(1 + 2α)ĈHK(θ)− αĤHI(θ)2

]
θ + o(θ2).

Proof. Combining Taylor’s theorem with Lemma B.2, the distortion to consumer surplus is

CS(θ)− CS(0) = − αĤHI(0)θ +
1

2
α
[
(2α− 1)ĈHK(0)− 3αĤHI(0)2

]
θ2 + o(θ2)

= − αĤHI(θ)θ + 2α2
[
ĤHI(θ)2 − ĈHK(θ)

]
θ2

+
1

2
α
[
(2α− 1)ĈHK(θ)− 3αĤHI(θ)2

]
θ2 + o(θ2)

= − αĤHI(θ)θ +
1

2
α
[
αĤHI(θ)2 − (2α + 1)ĈHK(θ)

]
θ2 + o(θ2),

where the second line follows by Lemma B.3.

Let Π(θ) denote aggregate equilibrium profits when the conduct parameter is θ. The

following lemma approximates Π at the second order:

Lemma B.5. In the neighborhood of θ = 0,

Π(θ) = Π(0) + α2ĤHI(θ)Σ(θ)θ

+
1

2
α2
[
2αĈHK(θ)− (1− Σ(θ))

(
(1 + 2α)ĈHK(θ)− 2αĤHI(θ)2

)]
θ2 + o(θ2).

Proof. Let πf (θ) = αsf (θ)/(1−αθsf (θ)) denote firm f ’s equilibrium profit. Using the Taylor

approximation 1/(1− x) = 1 + x+ x2 + o(x2) in the neighborhood of x = 0, we obtain

πf (θ) = αsf (θ)
(
1 + αθsf (θ) + α2θ2sf (θ)2

)
+ o(θ2).

Adding up over all the firms yields

Π(θ) = αΣ(θ) + α2ĤHI(θ)θ + α3ĈHK(θ)θ2 + o(θ2)

= Π(0) + α2ĤHI(θ)Σ(θ)θ
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+
1

2
α2
[
2αĈHK(θ) + (1− Σ(θ))

(
2αĤHI(θ)2 − (1 + 2α)ĈHK(θ)

)]
θ2 + o(θ2),

where the second line follows by Lemma B.3.

Combining Lemmas B.4 and B.5, we obtain the second part of Proposition 2:

Lemma B.6. In the neighborhood of θ = 0,

AS(θ)− AS(0) = −αĤHI(θ) (1− αΣ(θ)) θ

− 1

2
α
[
(1 + 3α− α(1 + 2α)Σ(θ)) ĈHK(θ)− α (1 + 2α(1− Σ(θ))) ĤHI(θ)2

]
θ2 + o(θ2).

C Proof of Proposition 3

Proof. Let us show that Σ(θ) is weakly decreasing in θ while Π(θ) is strictly increasing. The

former follows immediately, as

Σ(θ) = 1− H0

H∗(θ)

and H∗(θ) is strictly decreasing (see equations (23) and (24) above). To prove the latter, let

us show that each firm f ’s equilibrium profit, πf (θ), is strictly increasing.

As a first step, we show that the markup fitting-in function has strictly positive deriva-

tives. Differentiating equation (9) with respect to θ (and dropping the firm superscript to

ease notation), we obtain

∂m

∂θ
=

α

(1− αθS(x, θ))2

(
S(x, θ) + θ

∂S

∂θ

)
=

αS(x, θ)(1− θS(x, θ))

(1− αθS(x, θ))(1− θS(x, θ) + α(θS(x, θ))2)
> 0,

where we have used equation (23) to obtain the second line. Moreover,

∂m

∂x
=

αθ

(1− αθS(x, θ))2
∂S

∂x

is also strictly positive (see again equation (23)). It follows that, for every g ∈ F , the

equilibrium ι-markup of firm g, µg(θ) = m(T g/(H∗(θ)), θ), has a strictly positive derivative.

Let

Π̂f ((µg)g∈F) ≡ αµf T f
(
1− (1− α)µf

) α
1−α

H0 +
∑

g∈F T g (1− (1− α)µg)
α

1−α

be firm f ’s profit when firms set the profile of ι-markups (µg)g∈F . Clearly, Π̂
f has strictly posi-

tive partial derivatives with respect to the ι-markups of rival firms and πf (θ) = Π̂f ((µg(θ))g∈F).

(Recall from equation (4) that, under the ι-markup µf , firm f makes a profit of αµfsf .) More-

over, when the profile of ι-markups is equal to (µg(θ))g∈F , the fraction in the definition of
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Π̂f is equal to sf (θ) and its denominator is equal to H∗(θ) (see equations (6) and (10)). We

have:

∂Π̂f

∂µf

∣∣∣∣∣
(µg(θ))g∈F

= αT f
(
1− (1− α)µf (θ)

) α
1−α

−1

×
(1− µf (θ))H∗(θ) + αµf (θ)T f

(
1− (1− α)µf (θ)

) α
1−α

H∗(θ)2

=
αT f

(
1− (1− α)µf (θ)

) α
1−α

−1

H∗(θ)

[
1− µf (θ)(1− αsf (θ))

]
=

αT f
(
1− (1− α)µf (θ)

) α
1−α

−1

H∗(θ)

αsf (θ)(1− θ)

1− αθsf (θ)
,

where we have used the fact that µf (θ) and sf (θ) satisfy condition (9) to obtain the last line.

Note that the final expression is strictly positive unless θ = 1. We can conclude: for every

θ ∈ [0, 1),

dπf

dθ
=
∑
g∈F

∂Π̂f

∂µg

∣∣∣∣∣
(µg(θ))g∈F

dµg

dθ
> 0.

D Proof of Proposition 5

We require a third-order Taylor approximation of Σ̃(s). To derive such an approximation,

we use the resource constraint, C(s) = C̃(Σ̃(s)), which can be rewritten as:

Σ̃(s)

T (s)/H0
= (1− Σ̃(s))1−α

[∑
f∈F sf − (1− α) sf

1−αsf

T (s)/H0

]α
. (25)

It is useful to obtain first a second-order Taylor approximation of the bracketed term on the

right-hand side of equation (25).

Lemma D.1. In the neighborhood of s = 0,[∑
f∈F sf − (1− α) sf

1−αsf

αS ′(0)T (s)/H0

]α
= 1− α

(
ĤHI(s)

Σ(s)
+ Σ(s)

)

+ α

1

2
(3α− 1)

(
ĤHI(s)

Σ(s)

)2

+ αĤHI(s)− 3

2
α
ĈHK(s)

Σ(s)
− 1

2
(1− α)Σ(s)2

+ o(∥s∥2).

Proof. We begin by approximating the term inside square brackets. Approximating the
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numerator at the third order and using Lemma A.5 to approximate the denominator yields∑
f∈F sf − (1− α) sf

1−αsf

αS ′(0)T (s)/H0
=

Σ− (1− α)ĤHI− α(1− α)ĈHK + o(∥s∥3)

Σ +
(
αĤHI + Σ2

)
+
(

α(1+2α)
2

ĈHK + αĤHIΣ + Σ3
)
+ o(∥s∥3)

=
1− (1− α) ĤHI

Σ
− α(1− α) ĈHK

Σ
+ o(∥s∥2)

1 +
(
α ĤHI

Σ
+ Σ

)
+
(

α(1+2α)
2

ĈHK
Σ

+ αĤHI + Σ2
)
+ o(∥s∥2)

,

where we have used the fact that o(∥s∥3)/Σ(s) is a little-o of ∥s∥2 in the neighborhood of

s = 0, as ∥s∥/Σ(s) ≤ 1. For what follows, it is useful to keep in mind that ĤHI(s)/Σ(s) is

of order 1 and ĈHK(s)/Σ(s) is of order 2 in the neighborhood of s = 0, as

1

|F|
≤ ĤHI(s)

Σ(s)2
≤ 1 and

1

|F|
≤ ĈHK(s)

Σ(s)3
≤ 1

and Σ(s) is of order 1.

Using the Taylor approximation 1/(1 + x) = 1 − x + x2 + o(x2) in the neighborhood of

x = 0, we obtain∑
f∈F sf − (1− α) sf

1−αsf

αS ′(0)T (s)/H0
=

[
1− (1− α)

ĤHI

Σ
− α(1− α)

ĈHK

Σ

][
1−

(
α
ĤHI

Σ
+ Σ

)

−

(
α(1 + 2α)

2

ĈHK

Σ
+ αĤHI + Σ2

)
+

(
α
ĤHI

Σ
+ Σ

)2
+ o(∥s∥2)

=

[
1− (1− α)

ĤHI

Σ
− α(1− α)

ĈHK

Σ

][
1−

(
α
ĤHI

Σ
+ Σ

)

+

α2

(
ĤHI

Σ

)2

+ αĤHI− α(1 + 2α)

2

ĈHK

Σ

+ o(∥s∥2)

= 1−
(
α
ĤHI

Σ
+ Σ

)
+

α2

(
ĤHI

Σ

)2

+ αĤHI− α(1 + 2α)

2

ĈHK

Σ


− (1− α)

ĤHI

Σ

(
1−

(
α
ĤHI

Σ
+ Σ

))
− α(1− α)

ĈHK

Σ
+ o(∥s∥2)

= 1−

(
ĤHI

Σ
+ Σ

)
+

α

(
ĤHI

Σ

)2

+ ĤHI− 3

2
α
ĈHK

Σ

+ o(∥s∥2).

Combining this approximation with the fact that (1+x)α = 1+αx−α(1−α)x2/2+o(x2)
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in the neighborhood of x = 0, we obtain[∑
f∈F sf − (1− α) sf

1−αsf

αS ′(0)T (s)/H0

]α
=

(
1−

(
ĤHI

Σ
+ Σ

)

+

α

(
ĤHI

Σ

)2

+ ĤHI− 3

2
α
ĈHK

Σ

α

+ o(∥s∥2)

= 1 + α

−(ĤHI

Σ
+ Σ

)
+

α

(
ĤHI

Σ

)2

+ ĤHI− 3

2
α
ĈHK

Σ


− 1

2
α(1− α)

(
ĤHI

Σ
+ Σ

)2

+ o(∥s∥2)

= 1− α

(
ĤHI

Σ
+ Σ

)
+ α

1

2
(3α− 1)

(
ĤHI

Σ

)2

+ αĤHI

−3

2
α
ĈHK

Σ
− 1

2
(1− α)Σ2

)
+ o(∥s∥2).

Combining Lemma D.1 with equation (25), we obtain an approximation of Σ̃.

Lemma D.2. In the neighborhood of s = 0,

Σ̃(s) = Σ(s) +
1

2
α(1− α)

(
ĈHK(s)− ĤHI(s)2

Σ(s)

)
+ o(∥s∥3).

Proof. Using Lemma D.1 and the fact that lims→0 Σ̃(s) = 0, we can take limits in equa-

tion (25) to obtain

lim
s→0

Σ̃(s)

T (s)/H0
= (αS ′(0))α = S ′(0),

where the second equality follows by Lemma A.1. It follows that

Σ̃(s) = S ′(0)
T (s)

H0
+ o(∥T (s)∥) = Σ(s) + o(∥s∥),

where we have used Lemma A.5 to obtain the second equality. Inserting this approximation

into equation (25), making use of Lemma D.1, and using the Taylor approximation (1 −
x)1−α = 1− (1− α)x+ o(x) for x ≃ 0, we obtain

Σ̃(s)

T (s)/H0
= S ′(0) (1− (1− α)Σ)

[
1− α

(
ĤHI

Σ
+ Σ

)]
+ o(∥s∥)
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= S ′(0)

[
1− Σ− α

ĤHI

Σ

]
+ o(∥s∥).

(Recall from the proof of Lemma (D.1) that ĤHI(s)/Σ(s) is of first order.) Multiplying both

sides of the approximation by T (s)/H0 yields a second-order approximation of Σ̃(s):

Σ̃(s) =
S ′(0)

H0

[
1−

(
Σ + α

ĤHI

Σ

)]
T + o(∥s∥2)

=

[
1−

(
Σ + α

ĤHI

Σ

)][
Σ +

(
αĤHI + Σ2

)]
+ o(∥s∥2)

= Σ(s) + o(∥s∥2),

where the second line follows by Lemma A.5.

Inserting this new approximation of Σ̃(s) and the Taylor approximation (1 − x)1−α =

1 − (1 − α)x − α(1 − α)x2/2 + o(x2) for x ≃ 0 into equation (25), and making use of

Lemma D.1, we obtain

Σ̃(s)

T (s)/H0
= S ′(0)

[
1− (1− α)Σ− 1

2
α(1− α)Σ2

][
1− α

(
ĤHI

Σ
+ Σ

)

+α

1

2
(3α− 1)

(
ĤHI

Σ

)2

+ αĤHI− 3

2
α
ĈHK

Σ
− 1

2
(1− α)Σ2

+ o(∥s∥2)

= S ′(0)

1− α

(
ĤHI

Σ
+ Σ

)
+ α

1

2
(3α− 1)

(
ĤHI

Σ

)2

+ αĤHI− 3

2
α
ĈHK

Σ

−1

2
(1− α)Σ2

)
− (1− α)Σ

(
1− α

(
ĤHI

Σ
+ Σ

))
− 1

2
α(1− α)Σ2

]
+ o(∥s∥2)

= S ′(0)

1−(Σ + α
ĤHI

Σ

)
+ α

1

2
(3α− 1)

(
ĤHI

Σ

)2

+ ĤHI− 3

2
α
ĈHK

Σ


+ o(∥s∥2).

Multiplying both sides by T (s)/H0 and applying Lemma A.5 yields

Σ̃(s) =

[
Σ +

(
αĤHI + Σ2

)
+

(
α(1 + 2α)

2
ĈHK + αĤHIΣ + Σ3

)][
1−

(
Σ + α

ĤHI

Σ

)

+α

1

2
(3α− 1)

(
ĤHI

Σ

)2

+ ĤHI− 3

2
α
ĈHK

Σ

+ o(∥s∥3)
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= Σ+
(
αĤHI + Σ2

)
+

(
α(1 + 2α)

2
ĈHK + αĤHIΣ + Σ3

)
−

(
Σ + α

ĤHI

Σ

)(
Σ +

(
αĤHI + Σ2

))

+ αΣ

1

2
(3α− 1)

(
ĤHI

Σ

)2

+ ĤHI− 3

2
α
ĈHK

Σ

+ o(∥s∥3)

= Σ +
1

2
α(1− α)

(
ĈHK− ĤHI

2

Σ

)
+ o(∥s∥3).

We are now in a position to prove Proposition 5:

Proof. Using Lemma D.2 and the fact that log(1 − x) = −x − x2/2 − x3/3 + o(x3) in the

neighborhood of x = 0, equation (17) can be approximated as follows:

M(s) =

(
Σ +

1

2
Σ2 +

1

2
Σ3

)
−
(
Σ̃ +

1

2
Σ̃2 +

1

2
Σ̃3

)
+

α

1− α
(Σ− Σ̃) + o(∥s∥3)

= − 1

1− α
(Σ̃− Σ) + o(∥s∥3)

= − 1

2
α

(
ĈHK− ĤHI

2

Σ

)
+ o(∥s∥3).

E Proof of Proposition 6

Proof. Plugging the resource constraint, αµ̃ = Π(θ), into equation (19), we obtain

H̃(θ) ≡
(
1− 1− α

α
Π(θ)

) α
1−α

T .

Hence,

log H̃(θ)− log H̃(0) =
α

1− α

[
log

(
1− 1− α

α
Π(θ)

)
− logα

]
=

α

1− α
log

(
1− 1− α

α2
(Π(θ)− Π(0))

)
,

where we have used the fact that Π(0) = αΣ(0) = α. Using the Taylor approximation

log(1 − x) = −x − x2/2 + o(x2) for x ≃ 0 and inserting the approximation of Π(θ) from

Lemma B.5 (with Σ(θ) = 1), we obtain

log
H̃(θ)

H̃(0)
= − 1

α
(Π(θ)− Π(0))− 1

2

1− α

α3
(Π(θ)− Π(0))2 + o(θ2)
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= − αĤHI(θ)θ − 1

2
(1− α)αĤHI(θ)2θ2 − α2ĈHK(θ)θ2 + o(θ2).

Subtracting this from the Taylor approximation of logH∗(θ) (see Lemma B.4) and simplifying

proves the proposition.
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